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Basic Setting

M is a globally hyperbolic Lorentzian manifold with
background matter satisfying Einstein’s Equation

T bg
µν =

1
8π

Gµν =
1

8π

(
Rµν −

1
2

Rgµν

)
,

a scalar quantum field φ satisfying the Klein-Gordon equation

Kφ := (−� + ξR + m2)φ = 0

with mass m ≥ 0 and scalar curvature coupling ξ ∈ R.

φ is treated as a test-field, so in a general state ω

ω(T ren
µν (φ)) + T bg

µν 6=
1

8π
Gµν .
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Global Temperature

If M is stationary with preferred time flow χµ, we say

ω is in global thermal equilibrium at temperature T ≥ 0
⇔

ω satisfies the β-KMS condition with T = β−1 w.r.t. χµ.

Notation: ω(β), where β =∞ denotes a ground state.

The interpretation of ω(β) as thermal equilibrium states is
motivated by analogy with quantum statistical mechanics.
ω(β) is stationary, i.e. invariant under the time flow χµ.
ω(β) exists for all β ∈ (0,∞] under suitable circumstances
(e.g. ξR + m2 > 0 everywhere).
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Shortcomings of Global Temperature

The β-KMS condition raises some problems:
T is a global property:
Temperatures depend on x ∈ M (e.g. in non-equilibrium
thermodynamics), but χµ, the β-KMS condition and T are global.
In curved spaces, the interpretation may be flawed:
If the background energy density is negative at x ∈ M,

χµχνT bg
µν(x) < 0

can φ continually transfer energy (and entropy) to the background
matter via the metric? Can we trust the thermodynamical
interpretation of β-KMS states then?
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Local Temperature

For general M, mass m = 0, a Hadamard state ω and

:φ2: (x) = lim
y→x

φ(x)φ(y)− H(x , y),

a locally covariant Wick square, we say

ω has a local temperature Tω(x) at x ,

Tω(x) :=
√

12 ω(:φ2: (x)),

whenever ω(:φ2: (x)) ≥ 0. Otherwise, Tω(x) is not defined.

This formula was proposed by
Buchholz, Ojima and Roos, Ann. Physics 297 219–242 (2002),
Buchholz and Schlemmer, Class. Quantum Grav. 24, F25–F31 (2007).
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Motivation of the Local Temperature

Buchholz’ and Schlemmer’s motivation:
All β-KMS states are Hadamard.
In Minkowski space,

Tω(β)(x) ≡ β−1 = T .

Thus :φ2: (x) is a local thermometer in Minkowski space.
:φ2: (x) is generally covariant, so it is a local thermometer in
general M, at least when m = 0 (and perhaps ξ = 1

6 ).

Remark:
For massive fields the relation between β and ω(β)(:φ2: (x)) is different.
The definition of Tω(x) could be modified accordingly.
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Measuring Local Temperature

To measure Tω(x), consider an Unruh-DeWitt detector on a worldline:
For a long interaction interval, one finds thermal behaviour, but the
temperature is not localised in time.
Unruh, Phys. Rev. D 14, 870–892 (1976).
Requiring detailed balance puts limitations on derivations for short
interaction intervals.
Fewster, Juárez-Aubry and Louko, Class. Q. Grav. 33, 165003 (2016).
For stationary states in stationary M, the detector measures

T ′ω(x) =

√
Tω(x)2 +

aµaµ − Rµνvµvν

4π2 ,

which is constant along stationary worldlines.
Lynch and Afshordi, arXiv:1611.06619.

If acceleration and curvature vanish, the detector agrees with Tω(x).
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Problems with Local Temperature

Tω(x) also raises problems:
There is a renormalisation ambiguity:

:φ2: ′ = :φ2: + c1R + c2m2, c1, c2 ∈ R.

m = 0, but what is Tω(x) when R(x) 6= 0?
Cf. Hollands and Wald, Commun. Math. Phys. 223, 289–326 (2001).
Stationary observers may be accelerating and rotating:
How should the apparent forces on the systems they observe be
taken into account? (Cf. Unruh effect.)
Tω(x) is not defined when ω(:φ2: (x)) < 0:
Which states have a local temperature? All states? Ground
states?
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Quantum Inequalities

Tω(x) only exists when ω(:φ2: (x)) ≥ 0.

Many states have no local temperature:

ω(:φ2: (x))

is unbounded from below as ω ranges over all Hadamard states.
Quantum inequalities:
Suitable time averages of ω(:φ2: (x)) give a finite lower bound
independent of ω. In analogy to time-energy uncertainty,

ω(:φ2: (x)) cannot be too negative for too long.
However,

the lower bound may be negative,
the bound is not point-wise on ω(:φ2: (x)).

Even ground states may have negative ω(∞)(:φ2: (x)).
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Ground States Without Local Temperature I

If M is stationary and ω a stationary state (e.g. the ground state), then

τ 7→ ω(:φ2: (γ(τ)))

is constant along the stationary worldline τ 7→ γ(τ).

ω(:φ2: (γ(τ))) can be negative “forever”:
The Minkowski vacuum ω(∞) restricted to the Rindler spacetime is
a 1

2π -KMS state. (Unruh, Phys. Rev. D 14 870–892 (1976).)

ω(∞)(:φ2: (x)) ≡ 0 and Tω(∞)(x) ≡ 0.
The Fulling vacuum ωF in Rindler spacetime has

ωF (:φ2: (x)) < ω(∞)(:φ2: (x)) = 0.

It has no local temperature (and negative energy-density).

Cause: accelerated stationary observers.
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Energy Conditions

Gravity is attractive, so T bg
µν should satisfy for timelike vµ e.g.

vµvνT bg
µν ≥ 0 (weak energy condition),

vµvνRµν ≥ 0 (strong energy condition).

If M is stationary and the stationary observers are not accelerated:
M is ultra-static

M = R× Σ, g = −dt2 + hij(x)dx idx j .

R0µ = 0 and the weak/strong/dominant energy conditions all are

Rµν ≥ 0.

In particular, R = gµνRµν = hijRij ≥ 0.
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Ground States Without Local Temperature II

R 6≥ 0 can lead to ground states without local temperature:
Choose M = R4 with

g = −dt2 + Ω2(x)δijdx idx j .

Choose Ω such that
Ω ≥ 1 (M is globally hyperbolic),
Ω ≡ 1 near x = 0 (M is locally Minkowski space),
∆(ln Ω) ≥ 0 is non-trivial (R ≤ 0 is non-trivial),
Ω is bounded (ω(∞) exists for m = ξ = 0).

Such Ω exist and on some open O ⊂ M

ω(∞)(:φ2:) < 0, Ω ≡ 1.

Cause: acceleration, local curvature, violation of energy conditions.
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Existence of Local Temperature

These are sufficient conditions for the existence of Tω(x):

Theorem
Assume:

M is ultra-static with a compact Cauchy surface Σ and scalar
curvature R ≥ 0 non-trivial.
The Riemann curvature vanishes on an open set O ⊂ Σ.
φ has m = 0 and ξ ∈ (0, 1

6).
Then Tω(x) exists for all x ∈ O and all stationary Hadamard states ω.

Remark:
Near O, M is Minkowski space, so no local physics enters.
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The Class of Spacetimes

To find spacetimes satisfying the assumptions we need:
a compact Cauchy surface (Σ,h) with
non-trivial R ≥ 0 and
a flat open region O ⊂ Σ.

Example

Embed S3 into Euclidean R4 and flatten its top, keeping it convex.
Then choose h the induced metric.

One can construct other examples by
taking small perturbations of gµν in regions where R > 0,
using gluing techniques.
Cf. Delay Differential Geom. Appl. 29 (2011), 433–439.
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Properties of Ground States

Suppose M is stationary and a ground state ω(∞) exists.

Proposition
For every stationary Hadamard state ω we have

ω(:φ2: (x)) ≥ ω(∞)(:φ2: (x)).

for all x ∈ M. Moreover, for ω2(x , y) := ω(φ(x)φ(y))

ω2(x , y)− ω(∞)
2 (x , y)

is a smooth function of positive type on M ×M.

Conclusion: If Tω(∞)(x) exists, so does Tω(x) for all stationary ω.
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Properties of Local Temperature

Suppose M is stationary and β-KMS states exist for all β > 0.

Proposition
The map

T 7→ ω(β)(:φ2: (x)), β = T−1

is continuous and monotonically increasing in T ≥ 0. Moreover,

ω
(β)
2 (x , y)− ω(β′)

2 (x , y)

is a smooth function of positive type on M ×M if β < β′.

Conclusion: When local and global temperature both make sense,

T 7→ Tω(β)(x), T = β−1

is continuous and monotonically increasing.
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Proving the Existence Theorem

1 If ω(β)(:φ2: (x)) ≥ 0 for all β ∈ (0,∞) then

ω(:φ2: (x)) ≥ ω(∞)(:φ2: (x))

= lim
β→∞

ω(β)(:φ2: (x)) ≥ 0

and Tω(x) exists for all stationary ω.
2 M = R× Σ is ultra-static, so we can use a Wick rotation:

M̃β := S1
β × Σ , g̃ = dτ2 + h

and for y = (0,q) ∈ M, ỹ = (0,q) ∈ M̃,

ω(β)(:φ2: (y)) = lim
x̃→ỹ

(
G̃ − H̃

)
(x̃ , ỹ),

with G̃ = (−∆g̃ + ξR)−1 and H̃ the Hadamard parametrix near x̃ .

Note: R ≥ 0 is non-trivial, so G̃ exists and is C∞ on x̃ 6= ỹ .
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Proving the Existence Theorem

3 Fix y = (0,q) ∈ O ⊂ M with ỹ = (0,q) ∈ M̃.

Ω(x̃) := 4π2G̃(x̃ , ỹ) > 0

on M̃ \ {ỹ} (strong maximum principle). Near ỹ

Ω(x̃) = |x̃ |−2 + 4π2ω(β)(:φ2: (y)) + . . .

4 M̃β \ {ỹ} is asymptotically flat for

ĝ := Ω2g̃

with ỹ = at infinity and ADM mass ω(β)(:φ2: (y)).
R. Schoen J. Differential Geom. 20 (1984) 479–495.
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Proving the Existence Theorem

5 Using (−∆g̃ + ξR)Ω = 0 the scalar curvature of ĝ is

R̂ = Ω−2(R − 6Ω−1∆g̃Ω) = (1− 6ξ)Ω−2R ≥ 0.

By the positive mass theorem in 4 dimensions

ω(β)(:φ2: (y)) ≥ 0.

R. Schoen and S.-T. Yau Phys. Rev. Lett. 42, 547–548 (1979).
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Conclusions

Local and global temperature give qualitatively similar information:
If M is stationary

T = β−1 7→ Tω(β)(x)

is continuous and monotonic as long as Tω(β)(x) exists.
Tω(x) exists under physically reasonable conditions:
in ultra-static M, compact Σ, R ≥ 0 non-trivial, m = 0, and
ξ ∈ (0, 1

6) for stationary ω on flat regions.

This follows from corresponding results on ω(:φ2: (x)).

Tω(∞)(x) may fail to exist due to
accelerated observers (Unruh effect),
violation of energy conditions (ultra-static M with R 6≥ 0).
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Outlook

Opportunities for extensions:
include acceleration/non-zero curvature (cf. Lynch-Afshordi),
allow non-compact Cauchy surfaces (with asymptotic flatness or
stronger curvature conditions),
other local observables, e.g. the renormalised stress tensor T ren

µν ,
massive theories.

Clarify relations to
black hole thermodynamics/Hawking temperature,
energy conditions of background matter,
semi-classical Einstein equation.
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