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M is a globally hyperbolic Lorentzian manifold with
@ background matter satisfying Einstein’s Equation

1 1 1
b
T = S—WGW = 8- <F1’W - 2F?g,w> ,

@ a scalar quantum field ¢ satisfying the Klein-Gordon equation
Kp:=(—O+ER+m?)p=0
with mass m > 0 and scalar curvature coupling £ € R.

¢ is treated as a test-field, so in a general state w

ren b
W(Tu (#)) + T s WGHV-
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Global Temperature

If M is stationary with preferred time flow x*, we say

w is in global thermal equilibrium at temperature T > 0
&
w satisfies the 5-KMS condition with T = 3~ w.r.t. y*.

Notation: w(®, where 8 = oo denotes a ground state.

@ The interpretation of w(?) as thermal equilibrium states is
motivated by analogy with quantum statistical mechanics.

o w(® is stationary, i.e. invariant under the time flow y*.

o w(® exists for all 3 € (0, oc] under suitable circumstances
(e.g. ER + m? > 0 everywhere).
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Shortcomings of Global Temperature

The 3-KMS condition raises some problems:
@ T is a global property:
Temperatures depend on x € M (e.g. in non-equilibrium
thermodynamics), but x*, the 5-KMS condition and T are global.

@ In curved spaces, the interpretation may be flawed:
If the background energy density is negative at x € M,

XXV TRE(x) <0

can ¢ continually transfer energy (and entropy) to the background
matter via the metric? Can we trust the thermodynamical
interpretation of 5-KMS states then?
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Local Temperature

For general M, mass m = 0, a Hadamard state w and
0% (x) = Jim ¢(x)o(y) — H(x.y),
a locally covariant Wick square, we say
w has a local temperature T,(x) at x,
To(x) == /12 w(:¢%:(x)),
whenever w(: ¢?:(x)) > 0. Otherwise, T, (x) is not defined.

This formula was proposed by
@ Buchholz, Ojima and Roos, Ann. Physics 297 219-242 (2002),
@ Buchholz and Schlemmer, Class. Quantum Grav. 24, F25-F31 (2007).
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Motivation of the Local Temperature

Buchholz’ and Schlemmer’s motivation:
@ All B-KMS states are Hadamard.
@ In Minkowski space,

To(x)=p"=T

Thus : ¢?:(x) is a local thermometer in Minkowski space.

@ :¢?:(x) is generally covariant, so it is a local thermometer in
general M, at least when m = 0 (and perhaps £ = 6)

Remark:

For massive fields the relation between 3 and w(®)(: ¢?: (x)) is different.
The definition of T, (x) could be modified accordingly.
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Measuring Local Temperature

To measure T,(x), consider an Unruh-DeWitt detector on a worldline:

@ For a long interaction interval, one finds thermal behaviour, but the
temperature is not localised in time.
Unruh, Phys. Rev. D 14, 870-892 (1976).

@ Requiring detailed balance puts limitations on derivations for short
interaction intervals.
Fewster, Juarez-Aubry and Louko, Class. Q. Grav. 33, 165003 (2016).

@ For stationary states in stationary M, the detector measures

_ v
TL(x) = \/ T(x)2 + 22— B vy

472 ’

which is constant along stationary worldlines.
Lynch and Afshordi, arXiv:1611.06619.

If acceleration and curvature vanish, the detector agrees with T,(x).
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Problems with Local Temperature

T.(x) also raises problems:
@ There is a renormalisation ambiguity:

:¢2:’ ::¢2: + ¢tR+ comP, C1,C € R.

m = 0, but what is T,(x) when R(x) # 0?
Cf. Hollands and Wald, Commun. Math. Phys. 223, 289-326 (2001).

@ Stationary observers may be accelerating and rotating:
How should the apparent forces on the systems they observe be
taken into account? (Cf. Unruh effect.)

@ T,(x) is not defined when w(: ¢?: (x)) < O:
Which states have a local temperature? All states? Ground
states?
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Quantum Inequalities

T..(x) only exists when w(: ¢2: (x)) > 0.

@ Many states have no local temperature:

w(:¢?:(x))
is unbounded from below as w ranges over all Hadamard states.

@ Quantum inequalities:
Suitable time averages of w(: ¢?:(x)) give a finite lower bound
independent of w. In analogy to time-energy uncertainty,
w(:¢?:(x)) cannot be too negative for too long.
However,
o the lower bound may be negative,
e the bound is not point-wise on w(: ¢?: (x)).
@ Even ground states may have negative w(®)(: ¢2: (x)).
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Ground States Without Local Temperature |

If M is stationary and w a stationary state (e.g. the ground state), then

7= w(:6%: (1(7)))
is constant along the stationary worldline 7 — ~(7).

w(:¢?:(7(7))) can be negative “forever”:

@ The Minkowski vacuum w(*) restricted to the Rindler spacetime is
a ,--KMS state. (Unruh, Phys. Rev. D 14 870-892 (1976).)

@ w®)(:¢?:(x))=0and T ) (x) = 0.
@ The Fulling vacuum w’ in Rindler spacetime has

wF (6% (x)) < w*®) (4% (x)) = 0.
It has no local temperature (and negative energy-density).

Cause: accelerated stationary observers.
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Energy Conditions

Gravity is attractive, so Tﬁlg, should satisfy for timelike v* e.g.
viv' T2 >0 (weak energy condition),
vivYR,, >0 (strong energy condition).
If M is stationary and the stationary observers are not accelerated:
@ M is ultra-static
M=RxX, g=—df+hj(x)dx'dx.
@ Ry, = 0 and the weak/strong/dominant energy conditions all are
R.. > 0.

In particular, R = g*”R,,, = h'R; > 0.
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Ground States Without Local Temperature |l

R # 0 can lead to ground states without local temperature:
@ Choose M = R* with

g = —dt? + Q3(x)s;ax dx’.

@ Choose Q such that

Q>1 (M is globally hyperbolic),
Q=1nearx=0 (M is locally Minkowski space),
A(InQ) > 0is non-trivial (R < 0 is non-trivial),

Q is bounded (w(>) exists for m = ¢ = 0).

Such Q exist and on some open O C M
w(®)(:¢?) < 0, Q=1.

Cause: acceleration, local-curvature, violation of energy conditions.
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Existence of Local Temperature

These are sufficient conditions for the existence of T,,(x):

Theorem
Assume:

@ M is ultra-static with a compact Cauchy surface . and scalar
curvature R > 0 non-trivial.

@ The Riemann curvature vanishes on an open set O C %.
@ g hasm=0and¢ € (0,3).
Then T,,(x) exists for all x € O and all stationary Hadamard states w.

v

Remark:
Near O, M is Minkowski space, so no local physics enters.
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The Class of Spacetimes

To find spacetimes satisfying the assumptions we need:
@ a compact Cauchy surface (X, h) with
@ non-trivial R > 0 and
@ aflat open region O C X.

Embed S® into Euclidean R* and flatten its top, keeping it convex.
Then choose h the induced metric.

One can construct other examples by
@ taking small perturbations of g, in regions where R > 0,

@ using gluing techniques.
Cf. Delay Differential Geom. Appl. 29 (2011), 433-439.
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Properties of Ground States

Suppose M is stationary and a ground state w(>) exists.

Proposition
For every stationary Hadamard state w we have

w(:gbz: (x)) > w(oo)(:¢2:(x)).
for all x € M. Moreover, for wa(x,y) := w(o(x)o(y))

wa(X, y) — wE(x, y)

is a smooth function of positive type on M x M.

Conclusion: If T ) (x) exists, so does T,(x) for all stationary w.
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Properties of Local Temperature

Suppose M is stationary and 3-KMS states exist for all 5 > 0.

Proposition
The map

T—wB(¢?(x), p=T"
is continuous and monotonically increasing in T > 0. Moreover,

wé@)(x7y) — wéﬁ/)(xay)

is a smooth function of positive type on M x M if 3 < 3.

Conclusion: When local and global temperature both make sense,
T T, (x), T=p"
is continuous and monotonically increasing.

Ko Sanders 17/20



Proving the Existence Theorem

Q 1w (:¢2:(x)) > 0forall g € (0,00) then

w(:¢?:(x)) > w*)(:0%: (%))
= lim W@ (4% (x)) >0

B—o0

and T, (x) exists for all stationary w.
@ M =R x X is ultra-static, so we can use a Wick rotation:

I\N/IB::Skx)Z, g=dr?+h
and for y = (0,q) € M, 7 = (0,q) € M,

WO (62 (y)) = lim (é—F/> (*.9),

X—y
with G = (—Ag + ¢R)~" and H the Hadamard parametrix near X.

Note: R > 0 is non-trivial, so G exists and is C* on X +§.
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Proving the Existence Theorem

@ Fixy =(0,9) € Oc Mwith jy = (0,q) € M.
Q(X) := 47%G(%,7) > 0
on M\ {¥} (strong maximum principle). Near y
Q(X) = |72 + 420D (% (y)) + . ..

Q@ My \ {y} is asymptotically flat for

~ ~

g:=9%

with ¥ = at infinity and ADM mass w(®)(: ¢?: (y)).
R. Schoen J. Differential Geom. 20 (1984) 479-495.

Ko Sanders 18/20



Proving the Existence Theorem

@ Using (—Ag + £R)Q = 0 the scalar curvature of g is
R=Q2R-6Q7'0;Q)=(1-66Q22R>0.
By the positive mass theorem in 4 dimensions

WO () = 0.

R. Schoen and S.-T. Yau Phys. Rev. Lett. 42, 547-548 (1979).
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Conclusions

Local and global temperature give qualitatively similar information:
@ If M is stationary
T = ,3_1 — Tw(g)(X)
is continuous and monotonic as long as T, (x) exists.

@ T,(x) exists under physically reasonable conditions:
in ultra-static M, compact ¥, R > 0 non-trivial, m = 0, and
¢ € (0, %) for stationary w on flat regions.

This follows from corresponding results on w(: ¢?: (x)).

T, =) (x) may fail to exist due to

@ accelerated observers (Unruh effect),
@ violation of energy conditions (ultra-static M with R 2 0).
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Opportunities for extensions:
@ include acceleration/non-zero curvature (cf. Lynch-Afshordi),

@ allow non-compact Cauchy surfaces (with asymptotic flatness or
stronger curvature conditions),

@ other local observables, e.g. the renormalised stress tensor Tfﬁ,“,
@ massive theories.
Clarify relations to
@ black hole thermodynamics/Hawking temperature,
@ energy conditions of background matter,
@ semi-classical Einstein equation.
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