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1. Free AQFT in fixed curved spacetime

• Fields are quantized but they interact with classical gravity.
• Backreaction on the geometry can be a posteriori evaluated
through Einstein equations 〈T̂ab(x)〉 = Gab(x).

• No general locality and covariance issues (spacetime fixed).



1.1. Classical Structures: Global Hyperbolicity
• Good (4D smooth) spacetimes (M, g) are those initial data
over suitable smooth spacelike 3-surfaces Σ uniquely
determine solutions of field equations.

• (Time oriented) globally hyperbolic spacetimes [Wa84]
satisfy the requirement. The said smooth spacelike 3-surfaces
are Cauchy surfaces and field equations of hyperbolic type
constructed out of the metric g

• Klein Gordon is the simplest case of linear hyperbolic
equation for a smooth field φ : M → R

Pφ := (2g −m2 + ξR)φ = 0 (KG)

• Given smooth compactly supported Cauchy data over Σ

φ|Σ , ∂NΣ
φ|Σ

⇒ unique smooth solution of (KG) everywhere in M.



1.2. Classical Structures: Fundamental Solutions

• Retarded and advanced fundamental solutions exist
[BGP07]

G± : C∞0 (M)→ C∞(M) linear

Associating (real) smooth compactly supported sources f with
the unique solution φf = G±(f ) of

Pφf = f

such that G±(f ) is resp. supported in J±(supp(f )) (the
causal future/past of supp(f )).

• If S(M) := {φ : M → R | solves (KG), compact Cauchy data }
then the linear map

G := G− − G+ : C∞0 (M)→ S(M)

is surjective and h ∈ Ker(G ) ⇔ h = Pf for some
f ∈ C∞0 (M).



1.3. Classical Structures: Symplectic structures
• The space of solutions S(M) has a symplectic form

σM(φ, φ′) =

∫
Σ
φ∇NΣ

φ′ − φ′∇NΣ
φ dΣg

σ is antisymmetric, Cauchy surface (Σ) independent
• σM is weakly non-degenerate (⇐ well-posed Cauchy prob.):

σM(φ, φ′) = 0 for all φ′ ∈ S(M) implies φ = 0.
• G±, G are suitably continuous⇒ distributional kernels exist

G (f )(x) =

∫
M
G (x , y)f (y)dµg (y)

From Poincaré-Stokes’ theorem, for f , f ′ ∈ C∞0 (M),

σM(G (f ),G (f ′)) =

∫
M2

G (x , y)f (x)f ′(y)dµg (x)dµg (y)



1.4. Quantum Structures: ∗-algebra of fields
• Algebraically quantising φ over a given spacetime (M, g)
means associating φ with an abstract unital ∗-algebra
AΦ(M). AΦ(M) is made of all finite complex linear
combinations of finite products of the unit I and (smeared
quantized) field operator Φ(f ) with f ∈ C∞0 (M).

Specific Requirements
• 1.Linearity Φ : C∞0 (M)→ A(M) is R-linear.
• 2.Hermiticity Φ(f )∗ = Φ(f ).
• 3.Com.Rel. [Φ(f ),Φ(f ′)] = iG (f , f ′) (= iσM(G (f ),G (f ′))).
• 4.Field equations Φ(P(f )) = 0 (distributional sense)

Remark: (3) represents causality and CCR simultaneously
(a) Def of G ⇒ [Φ(f ),Φ(f ′)] = 0 if supp(f ) and supp(f ′) are
causally separated: uncorrelated measurement
(b) Interplay of G & σM ⇒ [Φ(t, x),∇NΣ

Φ(t, y)] = iδ(x , y)



1.5. Quantum Structures: states
No preferred quantum vacuum state / quantization procedure in a
generic (M, g). The algebraic notion of state is convenient.
• A (quantum) state on a (complex) unital ∗-algebra A is a map
ω : A→ C that is linear, positive ( ω(a∗a) ≥ 0), and
normalised ( ω(I) = 1).

• ω(a), for a = a∗ has the meaning of expectation value of the
observable a in the state ω.

• GNS construction. Given a state ω : A→ C, there exist
(1) a Hilbert space Hω,
(2) a dense subspace Dω ⊂ H,
(3) a unital ∗-algebra representation Πω : A→ L(Dω)
(4) a unit vector Ψω ∈ Dω such that

Dω = Πω(A)Ψω and ω(a) = 〈Ψω|Πω(a)Ψω〉ω .
(Hω,Dω,Πω,Ψω) is determined by ω up to unitary
transformations.



1.6. Quantum Structures: Gaussian/Quasifree states
• If A = AΦ(M) and ω its two-point function is ω(Φ(f )Φ(h)).
• Gaussian/Quasifree states: states with
◦ ω(Φ(f )) = 0
◦ ω(Φ(f1) · · ·Φ(fn)) from ω(Φ(fh)Φ(fk)) via Wick’s rule.

• GNS costruction for Gaussian states:
◦ Hω = F+(H

(1part)
ω ) Bosonic Fock space,

◦ Ψω Fock vacuum
◦ Πω(Φ(f )) = Φ̂(f ) = aVωφf + a†Vωφf

, φf = G (f ) ∈ S(M)

◦ Vω : S(M)→ H
(1part)
ω (R-linear, dense complexified range).

• Example: (M, g) with a timelike Killing vector field K e.g.
Minkowski st, Schwarzschild wedges, part of de Sitter st etc.
⇒ ∃ (unique under mild hypotheses [Ka78,KW91]) Gaussian
state ωK such that

VωK (φ) = φ+ positive-frequence part of φ = φ+ + φ−

NB frequence referred to the Killing time.



1.7.1. Quantum Structures: Hadamard states
• Meaningful states must be used to compute the back reaction
on the metric through Einstein equations, enlarging AΦ(M)
with elements Tµν(x) [Wa78,Mo03,BFV03] and in
perturbative renormalization involving also φn(x) and
T (φn1(x1) · · ·φnk (xk)) [BF00,BFK95,HW01-04,BDF09,KM16]

• Hadamard states do the job: [FSW78,FNW81,KW91]
Gaussian states

ω(Φ(f )Φ(h)) =

∫
M2

ω2(x , y)f (x)h(y)dµg (x)dµg (y)

short distance singularity similar to that of Minkowski vacuum

ω2(x , y) = w- lim
ε→0+

u(x , y)

σε(x , y)
+ v(x , y) lnσε(x , y) + wω(x , y)

◦ σε(x , y) (regularized) squared geodesical distance,
◦ u, v universal functions of local geometry,
◦ wω determined by ω



1.7.2. Quantum Structures: Hadamard states
• Equivalent definition of Hadamard states in terms of
Duistermaat-Hörmander’s wave front set of ω2(x , y).

• If f ∈ D ′(M) (distribution), the wave front set
WF (f ) ⊂ T ∗M consists of the pairs x ∈ M, p ∈ T ∗pM \ {0}
such that
the “Fourier trnsm at x” of f does not vanish rapidly along p.

• The distribution f is not a smooth function about x if
(x , p) ∈WF (f ) in particular.

• Example: WF (δx0) = {(x0, p) | 0 6= p ∈ T ∗x0
M}

• WF useful in many contexts (propagation of singularities in
PDE theory, criteria for multiplying distributions or restricting
them on submanifolds, WFs can be composed, etc.)

• Referring to distributions K ∈ D(M ×M)′ as two-point
functions, WF (K ) ⊂ T ∗(M ×M)



1.7.3. Quantum Structures: Hadamard states

THEOREM [Ra96a,Ra96b] A Gaussian state ω : A(M)→ C with
ω2 ∈ D ′(M ×M) is Hadamard iff

WF (ω2) = {(x , y , kx ,−ky ) ∈ T ∗(M ×M) \ 0 | (x , kx) ∼ (y , ky ) , kx � 0}
◦ (x , p) ∼ (y , q) means there is a lightlike geodesic through x and
y with co-tangent vectors p at x and q at y .
◦ p � 0 means that p is future-oriented.

• The arising Feynman propagator is coherent with the popular
statement that it propagates positive frequencies towards
positive times and negative ones backward in time.



1.7.4. Quantum Structures: Hadamard states
• Minkowski vacuum and several concrete natural Gaussian
isometry-invariant states of symmetric spacetimes are
Hadamard. Time-invariant Gaussian states in static globally
hyperbolic spacetimes are Hadamard [FNW81,SV00].

• Hadamard states exist in generic globally hyperbolic spacetime
(proofs based on the original deformation argument [FNW81])

• States related with Black-Hole physics and Hawking radiantion
have been proved to be Hadamard [DMP11,Sa13]

• From Hadamard property important results in relation to KMS
condition black hole radiation [FH89,KW91,MP12,CMP14].

• Hadamard states arise in cosmological models (FRW) (e.g.
low-energy states) [Ol07,DHP11,TB13,Av14].

• Important role in direct approaches to semiclassical Quantum
Gravity [Pi11]

• Alternate candidates [AAS12] of physically meaningful states,
but Hadamard condition remains crucial [FV12,BF13,FV13].



2. Null 3-surfaces and bulk-boundary algebra
correspondence

• The general problem is defining Hadamard states for some
types of physically meaningful spacetimes (M, g) admitting
lightlike completion I , with a (common) geometric structure.

• We define a (common) ∗-algebra of observables A(I ) on I such
that the algebra of fields in the bulk Aφ(M) embeds into A(I ).

• Defining states on A(I ) we induce back states on Aφ(M).



2.1. Relevant spacetimes and boundary structures
We focus of some glob.hyp. spacetimes (M, g) admitting a
(possibly conformal) boundary I± made of light-like 3-surface(s)
in a larger (possibly unphysical) spacetime (M̃, g̃).
• Asymptotically flat spacetimes at future/past null infinity
• Cosmological spatially-flat FRW models admitting a common
cosmological event/particle horizon (es. dS spacetime)
and non-homogeneous/non-isotropic deformations.
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W

B

ℑ−

ℑ+

i0

i−

i+

H +

B

H −

Hev

Σ′

Σ



2.2.1 Geometry of M̃ and I : metric
• The metric g̃ over M̃ is and extension of g over M or a
conformal (singular) extension of g : g̃ := Ω2g .

• g̃ is degenerate on I and around I takes the complete Bondi’s
form

g̃ = c(−da ⊗ du − du ⊗ da + dS2)

◦ u ∈ R affine parameter of null geodesics forming I ,
◦ a transverse coordinate (possibly a = Ω). a = 0 exactly on I ,
◦ dS2 standard metric on S2, c > 0 constant.

• I equipped with the degenerate metric h and n = ∂u admits an
infinite-dimensional (non-locally-compact, topological)
group of diffeomorphisms GI 3 g : I → I , preserving
physically meaningful geometrical structures.

• GI = BMS group (e.g., [Wa84]) for asymptotically flat
spacetimes or another infinite-dimensional group [DMP09] for
cosmological models, u is related to conformal time.



2.2.2 Geometry of M̃ and I : symmetries and symplectic
structure

THEOREM [AX78,DMP09]
Let ξ be a Killing vector of (M, g), then
(a) it smoothly extends to a (conformal) Killing vector on (M̃, g̃)
tangent to I ,
(b) the generated one-parameter group of diffeomorphisms of I is a
one-parameter subgroup of GI .

• The vector space S(I ) of regular maps ψ : I → R rapidly
vanishing at infinity admits a weakly-nondegenerate
symplectic form

σI (ψ,ψ
′) =

∫
I
ψ′∂uψ − ψ∂uψ

′ du ∧ µS2

• S(I ) and σI are GI -invariant: σI (g∗ψ, g∗ψ′) = σI (ψ,ψ
′)

where g ∈ GI and g∗ψ := ψ ◦ g−1 ∈ S(I ) if ψ ∈ S(I ).



2.2.3 Geometry of M̃ and I : bulk-boundary symplectic
injection
If some natural hypotheses are satisfyed for the spacetime (M, g)
embedded in (M̃, g̃), in particular
• If M is Kruskal spacetime/an asymptotically flat spacetime.
P = 2g − 1

6R (i.e. m = 0 and conformal coupling),
• If M is an asymptotically flat spacetime also i+/i− exist,

then φ ∈ S(M) uniquely and smoothly extends to some
hφ ∈ S(I ) (a singular conformal transformation may be involved).

THEOREM [DMP06,M06,DMP08,DMP09,DMP11]
The map Γ : S(M) 3 φ 7→ hφ ∈ S(I ) is linear, injective, and
preserves the symplectic forms

σM(φ, φ′) = σI (Γ(φ), Γ(φ′))

Remark. SΦ(M) depends on the concrete spacetime. S(I ) is in
common with the class.



2.3.1 The boundary ∗-algebra A(I ) and states: algebras

Referring to the symplectic space (S(I ), σI ), we define an
abstract unital ∗-algebra A(I ) with generators Ψ(h) satisfying
• 1.Linearity Ψ : S(I )→ A(M) is R-linear.
• 2.Hermiticity Ψ(h)∗ = Ψ(h).
• 3.Com.Rel. [Ψ(h),Ψ(h′)] = iσI (h, h′).

Since Γ is injective and preserves the syplectic forms:

THEOREM [Mo08,DMP08,DMP09]
There exists a unique unital ∗-algebra injective homomorphism
ıM : Aφ(M)→ A(I ) such that

ıM(Φ(f )) = Ψ(Γ(G (f )))

If ω : A(I )→ C is a state, ωM := ω ◦ ıM is a state on Aφ(M).



2.3.2 The boundary ∗-algebra A(I ) and states: symmetric
states

THEOREM [Mo08,DMP08,DMP09]
For every one-parameter ∗-algebra group of automorphisms

α
(ξ)
t : Aφ(M)→ Aφ(M)

induced by a Killing vector ξ of M there is one-parameter
∗-algebra group of automorphisms

β
(ξ)
t : A(I )→ A(I )

induced by a corresponding one-parameter subgroup of GI , such
that

ı ◦ α(ξ)
t = β

(ξ)
t ◦ ı



2.3.3 The boundary ∗-algebra A(I ) and states: symmetric
states
• If ω : A(I )→ C is invariant under GI , then ωM is invariant
under the action of every Killing isometry (if any) of (M, g).

ωM(α
(ξ)
t (a)) = ωM(a) ∀a ∈ Aφ(M)

• Passing to the Hilbert-space representation via GNS
theorem:

◦ α(ξ)
t is implementable with a unitary one-parameter group

U(ξ)
t : Hω → Hω

Πω(α
(ξ)
t (a)) = U(ξ)

t Πω(a)U(ξ)∗
t .

◦ Ψω is invariant under U(ξ)
t

U(ξ)
t Ψω = Ψω .



3. Induced Hadamard Killing-symmetric states

• Is it possible to fix the bondary state ωI on A(I ) so that the
induced bulk state ωM is Hadamard?

• Is it possible to pick out ωI which is also GI -invariant? (So
that ωM is Killing invariant in M if Killing symmetries exist.)



3.1.1 Asymptotically flat spacetimes and expanding
cosmological models

Main idea: Since I admits a GI -invariant expression of the metric
(complete Bondi’s form)

g̃ = c(−da ⊗ du − du ⊗ da + dS2)

it seems natural to define ωI decomposing h ∈ S(I ) into positive
and negative frequencies h = h+ + h− referring to u-Fourier
transform and next requiring that

ωI (Ψ(h)Ψ(h′)) = 〈h+|h′+〉 ∀h, h′ ∈ S(I ) (S)

THEOREM [MO06,MO09,DMP08,DMP09]
The Gaussian state over A(I ) in (S) is the unique GI -invariant
pure state.
The induced state ωM = ωI ◦ ıM over Aφ(M) is Killing-invariant
and Hadamard.



3.1.2 Asymptotically flat spacetimes and expanding
cosmological models
• The proof of Hadamard property obtained by checking
WF (ωM2) and using theorems on composition of WF sets

ωM2(f , f ′) = ωI (Γ(G (f ′)), Γ(G (f ′))) = (ωI◦Γ⊗Γ◦G⊗G )(f⊗f ′)

• The precise definition of S(I ) plays a crucial role: regularity
of h ∈ S(I ) and behaviour of h ∈ S(I ) for u → ±∞.

• In the know very symmetric cases ωM results to be the natural
state:
◦ Poincaré invariant vacuum in Minkowski spacetime,
◦ Bunch-Davies vacuum in deSitter spacetime.

• In cosmological models it is possible to induce states ωM
which are approximated KMS (thermal) states with respect to
the conformal time [DHP11].



3.2.1 Unruh state with Hadamard property: ωI
Unruh state ωU describes Hawking radiation, detected at I+, on a
spacetime M made of one-half of Kruskal manifold and seems
Minkowski vacuum near I−. The challenge is rigorously defining ωU
proving that it is Hadamard. We consider the massles case.
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We start by defining ωI on I = I− ∪H where H = H− ∪H+ with
• g̃ = 4M(−dΩ⊗ dU − dU ⊗ dΩ + dS2) , Ω = 2V on H

• g̃ = (−dΩ⊗ dv − dv ⊗ dΩ + dS2) , Ω = −2/u on I−

Finally, ωU := ωM (the state induced on Aφ(M) by ωI ).



3.2.2 Unruh state with Hadamard property: ωU
Many techncal problems arise in defining the space S(I ) since the
structure about i− is very complicated and dacay of wavefunctions
close to i0 difficult to study. Results [DMP11]
• ωI turns out to be thermal (KMS) on H with respect to ∂u
restriction to ∂τ (Schwarzschild time) thereon, with
T = THawking .

• ωI is identical to the boundary state inducing Minkowski
vacuum on I− and ωU(φ(x)φ(y)) tends to Minkowski 2-point
function approaching I−.

• The induced state ωU is Hadamard on M and invariant under
all the Killing isometries of M.

• A known result [FH89] implies that, as ωU is Hadamard on
Hev , Hawking radiation is detected approacing I+, examining
ωU(φ(x)φ(y)) pushed close to I+ by the Killing flow of ∂t .



+∞. Some final comments
• Some of the presented ideas have been developed further,
enriched with other ideas, also from alternative viewpoints,
during recent years by several authors with applications to
Minkowski spacetime, deSitter spacetime and cosmological
spacetimes (adiabatic states) [GW14,VW15,GOW16,Va16].

• The embedding Γ : Sφ(M)→ S(I ) is not surjective.
Restricting S(I ) to obtain surjectivity is a technically difficult
problem solved in [GW16]. It is equivalent to solve the
characteristic Cauchy-Goursat problem for KG equation. As a
byproduct ωM was proved to be a pure state as ωI is.

• A rigorous existence proof of the Hartle-Hawking-Israel state
establishing also the validity of Hadamard condition has been
obtained with a different (yet microlocal) technology [Sa13]
(Uniqueness known from [KW91].)

• Boundary-bulk induction procedure used in Schwarzshild
deSitter spacetime to construct Hadamard states [BJ15].



Thank you very much for your attention!


