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Overview

We study the wave equation on spacetimes bounded by Killing
horizons modeling the event horizons of your favorite
non-rotating black holes.

Without any assumptions on the behavior of null-geodesics,
solutions of the wave equation exhibit logarithmic energy
decay up to the horizon.

The resolvent grows at most exponentially with frequency.

Results of this kind are well known in other geometric settings (to
be discussed)
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Geometric setup

Let (M = Rt × X , g) be a stationary Lorentzian spacetime with
compact time slices. This means:

X ' {t = 0} is compact, connected, and spacelike,

∂t is a Killing vector field.

We impose two additional hypotheses:

∂M 6= ∅ is a connected Killing horizon generated by ∂t with
positive surface gravity,

∂t is timelike in the interior: g(∂t , ∂t) > 0 on M◦.
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Killing horizons

A Killing horizon generated by a Killing vector field T is a null
hypersurface H ⊂ M such that T is normal to H.

There is a function κ : H → R, called the surface gravity,
such that on H,

∇g (g(T ,T )) = −2κT .

κ is constant along integral curves of T .
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Killing horizons

In our setting T = ∂t and H = ∂M. Assume that κ > 0 is
constant.

If (r , y) ∈ [0, ε)r × ∂Xy are normal coordinates on X = {t = 0},

g−1 = −2κr∂2r − 2∂t∂r − k(y , ∂y ) + ∂2t + l.o.t

near ∂M, where k is a (dual) Riemannian metric on ∂X .
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Examples

Schwarzschild metric in Eddington–Finkelstein coordinates:

g = (1− 2m/r)dt2∗ − 2dt∗dr − r2dS2

on Rt∗ × [2m,∞)× S2 (but time slices are not compact).

The event horizon {r = 2m} is a Killing horizon generated by ∂t∗ ,
with κ = (4m)−1.

A compact example: stationary perturbations of Schwarzschild-de
Sitter spacetime preserving both horizons.



Energy decay

Since X is spacelike, the energy (measured by stress-energy tensor)

E [v ](s) =

∫
{t=s}

|Nv |2 − (1/2)g−1(dv , dv̄) dSX

associated with the timelike unit normal N to {t = s} controls all
first order derivatives.

Redshift effect: if κ > 0, then for each solution of �gv = 0,

E [v ](t) . E [v ](0).

Does E [v ](t) decay, and if so, how rapidly?



Energy decay

In general, the answer depends on trapping. A null-geodesic γ(s)
with γ(0) ∈ M◦ is non-trapped if γ(s)→ H as s → ±∞.

If M is non-trapping and �gv = 0 with initial data
(v0, v1) ∈ H2(X )× H1(X ), then for some ν > 0,

E [v ](t) . e−νt‖(v0, v1)‖H2×H1 .

This also holds when trapping is sufficiently mild.



Energy decay

When trapping is strong, there exist examples where

E [v ](t) .
p(t)

log(2 + t)
‖(v0, v1)‖H2×H1

is false for any function p(t) tending to zero.

How about upper bounds without any assumptions on trapping?

Theorem (G’ 17)

E [v ](t) decays logarithmically in time with a loss of derivatives,

E [v ](t)1/2 . (log(2 + t))−1‖(v0, v1)‖H2×H1

provided �gv = 0 with initial data (v0, v1) ∈ H2(X )× H1(X ).
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Decay to a constant

Solutions decay in norm to a constant: given (v0, v1), define

v∞ = vol(∂X )−1
∫
X
v1 − (2W − divgW )v0 dSX ,

where W is orthogonal projection of ∂t onto TX .

Theorem (G’ 17)

With (v0, v1) ∈ H2(X )× H1(X ) and v∞ ∈ C as above,

‖v(t)− v∞‖H1(X ) + ‖∂tv(t)‖L2(X ) . (log(2 + t))−1‖(v0, v1)‖H2×H1

provided �gv = 0 with initial data (v0, v1).

The same result holds for higher Sobolev norms, giving pointwise
logarithmic decay for smooth initial data.



Previous work

There are many works on unconditional logarithmic energy decay
for different operators and geometries:

Burq ’98, ’02, Vodev ’00, Cardoso–Vodev ’02, Bellassoued ’03, Fu
’08, Fathallah ’09, Bouclet ’10 Rodnianski–Tao ’11,
Eller–Toundykov ’12, Holzegel–Smulevici ’13, Datchev ’14,
Burq–Joly ’14, Moschidis ’15, Buffe ’16, Hassine ’15, Cornilleau
’14, Shapiro ’16, ’17

Moschidis: Lorentzian spacetimes containing more general
horizons, but also at least one asymptotically flat end.



Geodesic flow near Killing horizons

Let (t, x) be coordinates on M = Rt × X and (τ, ξ) be dual
momenta, i.e. write covectors as

τ dt + ξ · dx .

Let G : T ∗M → R be the principal symbol of �g , so that

G (x , ξ, τ) = −|τ dt + ξ · dx |2g

Recall ∂t is timelike in M◦ =⇒ G is positive definite on
T ∗M◦ ∩ {τ = 0}, i.e.

G (x , ξ, 0) = −
∣∣ξ · dx∣∣2

g
> 0 for ξ 6= 0.
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Geodesic flow near Killing horizons

The Hamilton vector field HG generates the null geodesic flow on
{G = 0} \ 0:

HG = (∂τG )∂t−(∂tG )∂τ + (∂ξiG )∂x i − (∂x iG )∂ξi

What happens over the boundary? H is characteristic for �g , and
in fact

{G = 0, τ = 0} \ 0 = N∗∂M \ 0.

Thus N∗∂M \ 0 is invariant under the flow. On the other hand,

±HG r = ±2τ > 0 on {r = 0, G = 0, ±τ > 0}.



Pseudoconvexity

A hypersurface {φ = 0} is pseudoconvex w.r.t {φ > 0} if

φ(t, x) = G (x , ξ, τ) = HGφ(x , ξ, τ) = 0

=⇒ H2
Gφ(x , ξ, τ) > 0.

If r0 > 0 is sufficiently small, then {r = r0} is pseudoconvex with
respect to {r < r0},

∂M is certainly not pseudoconvex because of trapped
null-bicharacteristics when τ = 0 (but recall HG r 6= 0 when τ 6= 0).
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Resolvent

Define the stationary wave operator P(ω) = e−iωt�ge
iωt on X .

Kernel of P(ω) corresponds to a mode solutions v(t, x) = e iωtu(x)
of �gv = 0.

Theorem (Mazzeo-Melrose ’87, Vasy ’10, Warnick ’13)

The operator P(ω) : H1(X )→ L2(X ) is Fredholm of index zero in
the half-plane {Imω < κ/2}, and P(ω)−1 is meromorphic.

Poles of P(ω)−1 are called resonances or quasinormal modes,
forming a discrete subset of {Imω < κ/2}.



Resolvent

Define the stationary wave operator P(ω) = e−iωt�ge
iωt on X .

Kernel of P(ω) corresponds to a mode solutions v(t, x) = e iωtu(x)
of �gv = 0.

Theorem (Mazzeo-Melrose ’87, Vasy ’10, Warnick ’13)

The operator P(ω) : H1(X )→ L2(X ) is Fredholm of index zero in
the half-plane {Imω < κ/2}, and P(ω)−1 is meromorphic.

Poles of P(ω)−1 are called resonances or quasinormal modes,
forming a discrete subset of {Imω < κ/2}.



Energy decay

Theorem (Lebeau ’96, Burq ’98, Batty–Duyckaerts ’08)

To prove logarithmic energy decay, it suffices to prove a
high-energy resolvent estimate for |ω| � 1:

‖P(ω)−1f ‖H1(X ) . eC |ω|‖f ‖L2(X ).

Part of this theorem requires ruling out resonances on the real axis.

For ω 6= 0 this is a version of Rellich’s theorem.

There is a resonance at ω = 0 generated by constants, but
E [v ](t) does not see this.

For decay to a constant, need to analyze zero resonance.



Resolvent bounds

First step is to prove a Carleman estimate. Define the conjugated
operator

Pϕ(ω) = eωϕP(ω)e−ωϕ,

where ω > 0 plays the role of a large parameter.

Theorem (G ’17)

There exists ϕ ∈ C∞(X ) and such that if ω � 1, then

ω3/2‖u‖L2(X ) + ω1/2‖u‖H1
b (X ) . ‖Pϕ(ω)u‖L2(X ) + ω3/2‖u‖L2(∂X )



Resolvent bounds

Applying this to e |ω|ϕu yields for ω � 1,

‖u‖H1
b (X ) . eC |ω|

(
‖P(ω)u‖L2(X ) + ‖u‖L2(∂X )

)
Two problems to be resolved:

H1
b norm only controls first order derivatives tangent to ∂X ,

There is an extra boundary term (in L2 norm) on the right.



Carleman estimates in the interior

Recall P(ω) is an operator on X depending on ω ∈ C.

The semiclassical (or parameter-dependent) symbol of Pϕ(ω) is

Gϕ(x , ξ, ω) = G (x , ξ + i |ω|dϕ, ω)

= −
∣∣ω dt + (ξ · dx + i |ω| dϕ)

∣∣2
g

where (x , ξ) ∈ T ∗X . Thus Gϕ(x , ξ, ω) is homogeneous in (ξ, ω).

Since ∂t is timelike in M◦, have that Gϕ(x , ξ, 0) = G (x , ξ, 0) is
positive definite on T ∗X ◦



Carleman estimates in the interior

First consider a compact set K b X ◦ and v ∈ C∞c (K ). Integrating
by parts,

‖Pϕ(ω)u‖2L2(X ) = 〈Pϕ(ω)Pϕ(ω)∗u, u〉

+ 〈[RePϕ(ω), ImPϕ(ω)]u, u〉 .

Suffices to construct ϕ ∈ C∞(X ) such that over K ,

|Gϕ|2 + {ReGϕ, ImGϕ} & ω(|ξ|2 + ω2).

By homogeneity in (ξ, ω), it suffices to satisfy the bracket condition

ω−1{ReGϕ, ImGϕ}(x , ξ, ω) > 0

when Gϕ(x , ξ, ω) = 0 and ξ2 + ω2 = 1.



Carleman estimates in the interior

As ω → 0, the bracket condition reads

H2
Gϕ(x , ξ, 0) > 0 when G (x , ξ, 0) = 0.

But recall G (x , ξ, 0) is positive definite, so bracket condition when
ω = 0 is trivial.

For ω 6= 0 and K b X ◦ we can set ϕ = eαψ for α� 1 depending
on K , where dψ 6= 0.

This implies the Carleman estimate for u ∈ C∞c (K ) and ω � 1,

ω3/2‖u‖L2(X ) + ω1/2‖u‖H1(X ) . ‖Pϕ(ω)u‖L2(X ),
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Carleman estimates up to the boundary?

Since the ellipticity of Gϕ degenerates, we need to choose ϕ more
carefully.

If ϕ = ϕ(r) and ϕ′(r) < 0, then ϕ automatically satisfies the
bracket condition over ∂X for ω 6= 0, since

(HG r)(x , ξ, ω) 6= 0 when r = 0, G (x , ξ, ω) = 0, ω 6= 0.

Unfortunately, when ω = 0 the bracket condition is not satisfied
since this would imply pseudoconvexity of ∂M!
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A degenerate Carleman estimate

Integrating by parts up to ∂M in spacetime resolves some of these
problems.

Suppose that ϕ′(r) < 0 and for λ(r) ∈ C∞ to be chosen, set

Π(x , ξ, τ) = −|τ |ϕ′(r){G , r}2 − {G , {G , r}}+ 4λG .

Is Π positive definite in (ξ, τ) up to ∂X?

No, because this again would imply pseudoconvexity.
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A degenerate Carleman estimate

On the other hand,

C0{G , r}2 − {G , {G , r}}+ 4λG & ((rρ)2 + |η|2 + τ2).

for C0 � 1 and λ(r) = −κ+ (1− δ)rC0.

Let v(t, x) = e iωtu(x) with ω > 0.

Thus Π(dv , dv̄) controls |r∂ru|2 + |∂yu|2 + ω2|u|2 near ∂M for
ω � 1, so ∫

X
Π(dv , dv̄) dSX & ‖u‖2H1

b (X ) + ω2‖u‖2L2(X ).
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A degenerate Carleman estimate

Let �ϕ = eωϕ�ge
−ωϕ, where ϕ = ϕ(r) and ϕ′(r) < 0.

Integrate by parts to obtain an inequality∫
X
ω−1|�ϕv |2 dSX +

∫
∂X
|∂tv |2 &

∫
X

Π(dv , dv̄) + ω2V |v |2 dSX

for v(t, x) = e iωtu(x) with ω > 0, supported near ∂M. Here, and
V = V (r) is a potential term.



A degenerate Carleman estimate

Unfortunately, V = −r(ϕ′)2 − 2r2ϕ′ϕ′′. Thus the most subtle part
of the argument is constructing ϕ, with

ϕ = ϕ(r) and ϕ′(r) < 0 near ∂X ,

satisfying the bracket condition everywhere on T ∗X ◦.

Once ϕ is fixed, ω2V can be absorbed if u is supported sufficiently
close to ∂X .



A degenerate Carleman estimate

Similarly, the boundary integral contributes ω2‖u‖2L2(∂X ), so

ω3‖u‖L2(∂X ) + ‖Pϕ(ω)u‖2L2(X ) & ω‖u‖
2
H1

b (X ) + ω3‖u‖2L2(X )

for u supported near ∂X .

Combine with the interior estimates via cutoffs, completing the
proof of the Theorem.



Eliminating the boundary term

Apply spacetime Green’s formula to v = e iωtu with ω ∈ R.

Since ∂t is normal to ∂M,

Im

∫
∂X

v̄ ∂tv dS∂X = Im

∫
X
v̄ �gv dSX .

Apply Cauchy–Schwarz to estimate

eCω‖u‖L2(∂X ) ≤ Cεe
C ′ω‖P(ω)‖L2(X ) + ε‖u‖L2(X )

and absorb the second term on RHS. Therefore,

‖u‖H1
b (X ) ≤ eCω‖P(ω)u‖L2(X ).



Improving the weight

Upgrading H1
b to H1 norm again uses the positivity of κ via

‖u‖H1(X ) . ‖P(ω)u‖L2(X ) + (1 + ω)‖u‖L2(X ).

The proof is exactly the same redshift argument that establishes
energy boundedness statement or Fredholmness of P(ω)−1.

This proves the resolvent estimate, since P(ω) is Fredholm of
index zero and we have shown that for ω � 1,

‖u‖H1(X ) . eCω‖P(ω)u‖L2(X ).



Open questions

What can be said about rotating spacetimes? Here, ∂t is not
timelike in an ergoregion =⇒ superradiance phenomena.

Dold ’16: there is a rotating spacetime (with additional
timelike boundary) admitting resonances in lower half-plane
(cf. Shlapentokh–Rothman, Moschidis)

Under an priori energy boundedness assumption are there
conditions under which you can exclude nonzero real
resonances and prove resolvent bounds?


