Logarithmic decay of waves on spacetimes bounded by Killing horizons

Oran Gannot

Northwestern University

22 May 2018

Overview

- We study the wave equation on spacetimes bounded by Killing horizons modeling the event horizons of your favorite non-rotating black holes.
- Without any assumptions on the behavior of null-geodesics, solutions of the wave equation exhibit logarithmic energy decay up to the horizon.
- The resolvent grows at most exponentially with frequency.
- We study the wave equation on spacetimes bounded by Killing horizons modeling the event horizons of your favorite non-rotating black holes.
- Without any assumptions on the behavior of null-geodesics, solutions of the wave equation exhibit logarithmic energy decay up to the horizon.
- The resolvent grows at most exponentially with frequency.

Results of this kind are well known in other geometric settings (to be discussed)

Geometric setup

Let ($M=\mathbb{R}_{t} \times X, g$) be a stationary Lorentzian spacetime with compact time slices. This means:

- $X \simeq\{t=0\}$ is compact, connected, and spacelike,
- ∂_{t} is a Killing vector field.

Geometric setup

Let $\left(M=\mathbb{R}_{t} \times X, g\right)$ be a stationary Lorentzian spacetime with compact time slices. This means:

- $X \simeq\{t=0\}$ is compact, connected, and spacelike,
- ∂_{t} is a Killing vector field.

We impose two additional hypotheses:

- $\partial M \neq \emptyset$ is a connected Killing horizon generated by ∂_{t} with positive surface gravity,
- ∂_{t} is timelike in the interior: $g\left(\partial_{t}, \partial_{t}\right)>0$ on M°.

Killing horizons

A Killing horizon generated by a Killing vector field T is a null hypersurface $\mathcal{H} \subset M$ such that T is normal to \mathcal{H}.

Killing horizons

A Killing horizon generated by a Killing vector field T is a null hypersurface $\mathcal{H} \subset M$ such that T is normal to \mathcal{H}.

- There is a function $\kappa: \mathcal{H} \rightarrow \mathbb{R}$, called the surface gravity, such that on \mathcal{H},

$$
\nabla_{g}(g(T, T))=-2 \kappa T
$$

- κ is constant along integral curves of T.

Killing horizons

In our setting $T=\partial_{t}$ and $\mathcal{H}=\partial M$. Assume that $\kappa>0$ is constant.

Killing horizons

In our setting $T=\partial_{t}$ and $\mathcal{H}=\partial M$. Assume that $\kappa>0$ is constant.

$$
\begin{aligned}
& \text { If }(r, y) \in[0, \varepsilon)_{r} \times \partial X_{y} \text { are normal coordinates on } X=\{t=0\}, \\
& \qquad g^{-1}=-2 \kappa r \partial_{r}^{2}-2 \partial_{t} \partial_{r}-k\left(y, \partial_{y}\right)+\partial_{t}^{2}+\text { l.o.t }
\end{aligned}
$$

near ∂M, where k is a (dual) Riemannian metric on ∂X.

Examples

Schwarzschild metric in Eddington-Finkelstein coordinates:

$$
g=(1-2 m / r) d t_{*}^{2}-2 d t_{*} d r-r^{2} d \mathbb{S}^{2}
$$

on $\mathbb{R}_{t_{*}} \times[2 m, \infty) \times \mathbb{S}^{2}$ (but time slices are not compact).
The event horizon $\{r=2 m\}$ is a Killing horizon generated by $\partial_{t_{*}}$, with $\kappa=(4 m)^{-1}$.

A compact example: stationary perturbations of Schwarzschild-de Sitter spacetime preserving both horizons.

Energy decay

Since X is spacelike, the energy (measured by stress-energy tensor)

$$
E[v](s)=\int_{\{t=s\}}|N v|^{2}-(1 / 2) g^{-1}(d v, d \bar{v}) d S_{X}
$$

associated with the timelike unit normal N to $\{t=s\}$ controls all first order derivatives.

Redshift effect: if $\kappa>0$, then for each solution of $\square_{g} v=0$,

$$
E[v](t) \lesssim E[v](0)
$$

Does $E[v](t)$ decay, and if so, how rapidly?

Energy decay

In general, the answer depends on trapping. A null-geodesic $\gamma(s)$ with $\gamma(0) \in M^{\circ}$ is non-trapped if $\gamma(s) \rightarrow \mathcal{H}$ as $s \rightarrow \pm \infty$.

If M is non-trapping and $\square_{g} v=0$ with initial data $\left(v_{0}, v_{1}\right) \in H^{2}(X) \times H^{1}(X)$, then for some $\nu>0$,

$$
E[v](t) \lesssim e^{-\nu t}\left\|\left(v_{0}, v_{1}\right)\right\|_{H^{2} \times H^{1}} .
$$

This also holds when trapping is sufficiently mild.

Energy decay

When trapping is strong, there exist examples where

$$
E[v](t) \lesssim \frac{p(t)}{\log (2+t)}\left\|\left(v_{0}, v_{1}\right)\right\|_{H^{2} \times H^{1}}
$$

is false for any function $p(t)$ tending to zero.

Energy decay

When trapping is strong, there exist examples where

$$
E[v](t) \lesssim \frac{p(t)}{\log (2+t)}\left\|\left(v_{0}, v_{1}\right)\right\|_{H^{2} \times H^{1}}
$$

is false for any function $p(t)$ tending to zero.
How about upper bounds without any assumptions on trapping?

Energy decay

When trapping is strong, there exist examples where

$$
E[v](t) \lesssim \frac{p(t)}{\log (2+t)}\left\|\left(v_{0}, v_{1}\right)\right\|_{H^{2} \times H^{1}}
$$

is false for any function $p(t)$ tending to zero.
How about upper bounds without any assumptions on trapping?

Theorem (G' 17)

$E[v](t)$ decays logarithmically in time with a loss of derivatives,

$$
E[v](t)^{1 / 2} \lesssim(\log (2+t))^{-1}\left\|\left(v_{0}, v_{1}\right)\right\|_{H^{2} \times H^{1}}
$$

provided $\square_{g} v=0$ with initial data $\left(v_{0}, v_{1}\right) \in H^{2}(X) \times H^{1}(X)$.

Decay to a constant

Solutions decay in norm to a constant: given (v_{0}, v_{1}) define

$$
v_{\infty}=\operatorname{vol}(\partial X)^{-1} \int_{X} v_{1}-\left(2 W-\operatorname{div}_{g} W\right) v_{0} d S_{X},
$$

where W is orthogonal projection of ∂_{t} onto $T X$.

Theorem (G' 17)

With $\left(v_{0}, v_{1}\right) \in H^{2}(X) \times H^{1}(X)$ and $v_{\infty} \in \mathbb{C}$ as above,
$\left\|v(t)-v_{\infty}\right\|_{H^{1}(X)}+\left\|\partial_{t} v(t)\right\|_{L^{2}(X)} \lesssim(\log (2+t))^{-1}\left\|\left(v_{0}, v_{1}\right)\right\|_{H^{2} \times H^{1}}$
provided $\square g \vee=0$ with initial data (v_{0}, v_{1}).

The same result holds for higher Sobolev norms, giving pointwise logarithmic decay for smooth initial data.

There are many works on unconditional logarithmic energy decay for different operators and geometries:

Burq '98, '02, Vodev '00, Cardoso-Vodev '02, Bellassoued '03, Fu '08, Fathallah '09, Bouclet '10 Rodnianski-Tao '11, Eller-Toundykov '12, Holzegel-Smulevici '13, Datchev '14, Burq-Joly '14, Moschidis '15, Buffe '16, Hassine '15, Cornilleau '14, Shapiro '16, '17

Moschidis: Lorentzian spacetimes containing more general horizons, but also at least one asymptotically flat end.

Geodesic flow near Killing horizons

Let (t, x) be coordinates on $M=\mathbb{R}_{t} \times X$ and (τ, ξ) be dual momenta, i.e. write covectors as

$$
\tau d t+\xi \cdot d x
$$

Let $G: T^{*} M \rightarrow \mathbb{R}$ be the principal symbol of \square_{g}, so that

$$
G(x, \xi, \tau)=-|\tau d t+\xi \cdot d x|_{g}^{2}
$$

Geodesic flow near Killing horizons

Let (t, x) be coordinates on $M=\mathbb{R}_{t} \times X$ and (τ, ξ) be dual momenta, i.e. write covectors as

$$
\tau d t+\xi \cdot d x
$$

Let $G: T^{*} M \rightarrow \mathbb{R}$ be the principal symbol of \square_{g}, so that

$$
G(x, \xi, \tau)=-|\tau d t+\xi \cdot d x|_{g}^{2}
$$

Recall ∂_{t} is timelike in $M^{\circ} \Longrightarrow G$ is positive definite on $T^{*} M^{\circ} \cap\{\tau=0\}$, i.e.

$$
G(x, \xi, 0)=-|\xi \cdot d x|_{g}^{2}>0 \text { for } \xi \neq 0
$$

Geodesic flow near Killing horizons

The Hamilton vector field H_{G} generates the null geodesic flow on $\{G=0\} \backslash 0$:

$$
H_{G}=\left(\partial_{\tau} G\right) \partial_{t}-\left(\partial_{t} G\right) \partial_{\tau}+\left(\partial_{\xi_{i}} G\right) \partial_{x^{i}}-\left(\partial_{x^{i}} G\right) \partial_{\xi_{i}}
$$

What happens over the boundary? \mathcal{H} is characteristic for \square_{g}, and in fact

$$
\{G=0, \tau=0\} \backslash 0=N^{*} \partial M \backslash 0
$$

Thus $N^{*} \partial M \backslash 0$ is invariant under the flow. On the other hand,

$$
\pm H_{G} r= \pm 2 \tau>0 \text { on }\{r=0, G=0, \pm \tau>0\}
$$

Pseudoconvexity

A hypersurface $\{\phi=0\}$ is pseudoconvex w.r.t $\{\phi>0\}$ if

$$
\begin{aligned}
\phi(t, x) & =G(x, \xi, \tau)=H_{G} \phi(x, \xi, \tau)=0 \\
& \Longrightarrow H_{G}^{2} \phi(x, \xi, \tau)>0
\end{aligned}
$$

Pseudoconvexity

A hypersurface $\{\phi=0\}$ is pseudoconvex w.r.t $\{\phi>0\}$ if

$$
\begin{aligned}
\phi(t, x) & =G(x, \xi, \tau)=H_{G} \phi(x, \xi, \tau)=0 \\
& \Longrightarrow H_{G}^{2} \phi(x, \xi, \tau)>0 .
\end{aligned}
$$

If $r_{0}>0$ is sufficiently small, then $\left\{r=r_{0}\right\}$ is pseudoconvex with respect to $\left\{r<r_{0}\right\}$,
∂M is certainly not pseudoconvex because of trapped null-bicharacteristics when $\tau=0$ (but recall $H_{G} r \neq 0$ when $\tau \neq 0$).

Resolvent

Define the stationary wave operator $P(\omega)=e^{-i \omega t} \square_{g} e^{i \omega t}$ on X.
Kernel of $P(\omega)$ corresponds to a mode solutions $v(t, x)=e^{i \omega t} u(x)$ of $\square_{g} v=0$.

Resolvent

Define the stationary wave operator $P(\omega)=e^{-i \omega t} \square_{g} e^{i \omega t}$ on X.
Kernel of $P(\omega)$ corresponds to a mode solutions $v(t, x)=e^{i \omega t} u(x)$ of $\square_{g} v=0$.

Theorem (Mazzeo-Melrose '87, Vasy '10, Warnick '13)

The operator $P(\omega): H^{1}(X) \rightarrow L^{2}(X)$ is Fredholm of index zero in the half-plane $\{\operatorname{Im} \omega<\kappa / 2\}$, and $P(\omega)^{-1}$ is meromorphic.

Poles of $P(\omega)^{-1}$ are called resonances or quasinormal modes, forming a discrete subset of $\{\operatorname{Im} \omega<\kappa / 2\}$.

Energy decay

Theorem (Lebeau '96, Burq '98, Batty-Duyckaerts '08)

To prove logarithmic energy decay, it suffices to prove a high-energy resolvent estimate for $|\omega| \gg 1$:

$$
\left\|P(\omega)^{-1} f\right\|_{H^{1}(X)} \lesssim e^{C|\omega|}\|f\|_{L^{2}(X)}
$$

Part of this theorem requires ruling out resonances on the real axis.

- For $\omega \neq 0$ this is a version of Rellich's theorem.
- There is a resonance at $\omega=0$ generated by constants, but $E[v](t)$ does not see this.

For decay to a constant, need to analyze zero resonance.

Resolvent bounds

First step is to prove a Carleman estimate. Define the conjugated operator

$$
P_{\varphi}(\omega)=e^{\omega \varphi} P(\omega) e^{-\omega \varphi}
$$

where $\omega>0$ plays the role of a large parameter.

Theorem (G '17)

There exists $\varphi \in \mathcal{C}^{\infty}(X)$ and such that if $\omega \gg 1$, then

$$
\omega^{3 / 2}\|u\|_{L^{2}(X)}+\omega^{1 / 2}\|u\|_{H_{b}^{1}(X)} \lesssim\left\|P_{\varphi}(\omega) u\right\|_{L^{2}(X)}+\omega^{3 / 2}\|u\|_{L^{2}(\partial X)}
$$

Applying this to $e^{|\omega| \varphi} u$ yields for $\omega \gg 1$,

$$
\|u\|_{H_{b}^{1}(X)} \lesssim e^{C|\omega|}\left(\|P(\omega) u\|_{L^{2}(X)}+\|u\|_{L^{2}(\partial X)}\right)
$$

Two problems to be resolved:

- H_{b}^{1} norm only controls first order derivatives tangent to ∂X,
- There is an extra boundary term (in L^{2} norm) on the right.

Carleman estimates in the interior

Recall $P(\omega)$ is an operator on X depending on $\omega \in \mathbb{C}$.

The semiclassical (or parameter-dependent) symbol of $P_{\varphi}(\omega)$ is

$$
\begin{aligned}
G_{\varphi}(x, \xi, \omega) & =G(x, \xi+i|\omega| d \varphi, \omega) \\
& =-|\omega d t+(\xi \cdot d x+i|\omega| d \varphi)|_{g}^{2}
\end{aligned}
$$

where $(x, \xi) \in T^{*} X$. Thus $G_{\varphi}(x, \xi, \omega)$ is homogeneous in (ξ, ω).

Since ∂_{t} is timelike in M°, have that $G_{\varphi}(x, \xi, 0)=G(x, \xi, 0)$ is positive definite on $T^{*} X^{\circ}$

Carleman estimates in the interior

First consider a compact set $K \Subset X^{\circ}$ and $v \in \mathcal{C}_{\mathrm{c}}^{\infty}(K)$. Integrating by parts,

$$
\begin{aligned}
\left\|P_{\varphi}(\omega) u\right\|_{L^{2}(X)}^{2} & =\left\langle P_{\varphi}(\omega) P_{\varphi}(\omega)^{*} u, u\right\rangle \\
& +\left\langle\left[\operatorname{Re} P_{\varphi}(\omega), \operatorname{Im} P_{\varphi}(\omega)\right] u, u\right\rangle .
\end{aligned}
$$

Suffices to construct $\varphi \in \mathcal{C}^{\infty}(X)$ such that over K,

$$
\left|G_{\varphi}\right|^{2}+\left\{\operatorname{Re} G_{\varphi}, \operatorname{Im} G_{\varphi}\right\} \gtrsim \omega\left(|\xi|^{2}+\omega^{2}\right)
$$

By homogeneity in (ξ, ω), it suffices to satisfy the bracket condition

$$
\omega^{-1}\left\{\operatorname{Re} G_{\varphi}, \operatorname{Im} G_{\varphi}\right\}(x, \xi, \omega)>0
$$

when $G_{\varphi}(x, \xi, \omega)=0$ and $\xi^{2}+\omega^{2}=1$.

Carleman estimates in the interior

As $\omega \rightarrow 0$, the bracket condition reads

$$
H_{G}^{2} \varphi(x, \xi, 0)>0 \text { when } G(x, \xi, 0)=0 .
$$

But recall $G(x, \xi, 0)$ is positive definite, so bracket condition when $\omega=0$ is trivial.

Carleman estimates in the interior

As $\omega \rightarrow 0$, the bracket condition reads

$$
H_{G}^{2} \varphi(x, \xi, 0)>0 \text { when } G(x, \xi, 0)=0
$$

But recall $G(x, \xi, 0)$ is positive definite, so bracket condition when $\omega=0$ is trivial.

For $\omega \neq 0$ and $K \Subset X^{\circ}$ we can set $\varphi=e^{\alpha \psi}$ for $\alpha \gg 1$ depending on K, where $d \psi \neq 0$.

Carleman estimates in the interior

As $\omega \rightarrow 0$, the bracket condition reads

$$
H_{G}^{2} \varphi(x, \xi, 0)>0 \text { when } G(x, \xi, 0)=0 .
$$

But recall $G(x, \xi, 0)$ is positive definite, so bracket condition when $\omega=0$ is trivial.

For $\omega \neq 0$ and $K \Subset X^{\circ}$ we can set $\varphi=e^{\alpha \psi}$ for $\alpha \gg 1$ depending on K, where $d \psi \neq 0$.

This implies the Carleman estimate for $u \in \mathcal{C}_{c}^{\infty}(K)$ and $\omega \gg 1$,

$$
\omega^{3 / 2}\|u\|_{L^{2}(X)}+\omega^{1 / 2}\|u\|_{H^{1}(X)} \lesssim\left\|P_{\varphi}(\omega) u\right\|_{L^{2}(X)}
$$

Carleman estimates up to the boundary?

Since the ellipticity of G_{φ} degenerates, we need to choose φ more carefully.

Carleman estimates up to the boundary?

Since the ellipticity of G_{φ} degenerates, we need to choose φ more carefully.

If $\varphi=\varphi(r)$ and $\varphi^{\prime}(r)<0$, then φ automatically satisfies the bracket condition over ∂X for $\omega \neq 0$, since

$$
\left(H_{G} r\right)(x, \xi, \omega) \neq 0 \text { when } r=0, G(x, \xi, \omega)=0, \omega \neq 0
$$

Carleman estimates up to the boundary?

Since the ellipticity of G_{φ} degenerates, we need to choose φ more carefully.

If $\varphi=\varphi(r)$ and $\varphi^{\prime}(r)<0$, then φ automatically satisfies the bracket condition over ∂X for $\omega \neq 0$, since

$$
\left(H_{G} r\right)(x, \xi, \omega) \neq 0 \text { when } r=0, G(x, \xi, \omega)=0, \omega \neq 0
$$

Unfortunately, when $\omega=0$ the bracket condition is not satisfied since this would imply pseudoconvexity of ∂M !

A degenerate Carleman estimate

Integrating by parts up to ∂M in spacetime resolves some of these problems.

Suppose that $\varphi^{\prime}(r)<0$ and for $\lambda(r) \in \mathcal{C}^{\infty}$ to be chosen, set

$$
\Pi(x, \xi, \tau)=-|\tau| \varphi^{\prime}(r)\{G, r\}^{2}-\{G,\{G, r\}\}+4 \lambda G
$$

Is Π positive definite in (ξ, τ) up to ∂X ?

A degenerate Carleman estimate

Integrating by parts up to ∂M in spacetime resolves some of these problems.

Suppose that $\varphi^{\prime}(r)<0$ and for $\lambda(r) \in \mathcal{C}^{\infty}$ to be chosen, set

$$
\Pi(x, \xi, \tau)=-|\tau| \varphi^{\prime}(r)\{G, r\}^{2}-\{G,\{G, r\}\}+4 \lambda G
$$

Is Π positive definite in (ξ, τ) up to ∂X ?
No, because this again would imply pseudoconvexity.

A degenerate Carleman estimate

On the other hand,

$$
C_{0}\{G, r\}^{2}-\{G,\{G, r\}\}+4 \lambda G \gtrsim\left((r \rho)^{2}+|\eta|^{2}+\tau^{2}\right)
$$

$$
\text { for } C_{0} \gg 1 \text { and } \lambda(r)=-\kappa+(1-\delta) r C_{0}
$$

A degenerate Carleman estimate

On the other hand,

$$
C_{0}\{G, r\}^{2}-\{G,\{G, r\}\}+4 \lambda G \gtrsim\left((r \rho)^{2}+|\eta|^{2}+\tau^{2}\right)
$$

for $C_{0} \gg 1$ and $\lambda(r)=-\kappa+(1-\delta) r C_{0}$.

Let $v(t, x)=e^{i \omega t} u(x)$ with $\omega>0$.

Thus $\Pi(d v, d \bar{v})$ controls $\left|r \partial_{r} u\right|^{2}+\left|\partial_{y} u\right|^{2}+\omega^{2}|u|^{2}$ near ∂M for $\omega \gg 1$, so

$$
\int_{X} \Pi(d v, d \bar{v}) d S_{X} \gtrsim\|u\|_{H_{b}^{1}(X)}^{2}+\omega^{2}\|u\|_{L^{2}(X)}^{2}
$$

A degenerate Carleman estimate

$$
\text { Let } \square_{\varphi}=e^{\omega \varphi} \square_{g} e^{-\omega \varphi}, \text { where } \varphi=\varphi(r) \text { and } \varphi^{\prime}(r)<0 \text {. }
$$

Integrate by parts to obtain an inequality

$$
\int_{X} \omega^{-1}\left|\square_{\varphi} v\right|^{2} d S_{X}+\int_{\partial X}\left|\partial_{t} v\right|^{2} \gtrsim \int_{X} \Pi(d v, d \bar{v})+\omega^{2} V|v|^{2} d S_{X}
$$

for $v(t, x)=e^{i \omega t} u(x)$ with $\omega>0$, supported near ∂M. Here, and $V=V(r)$ is a potential term.

A degenerate Carleman estimate

Unfortunately, $V=-r\left(\varphi^{\prime}\right)^{2}-2 r^{2} \varphi^{\prime} \varphi^{\prime \prime}$. Thus the most subtle part of the argument is constructing φ, with

$$
\varphi=\varphi(r) \text { and } \varphi^{\prime}(r)<0 \text { near } \partial X
$$

satisfying the bracket condition everywhere on $T^{*} X^{\circ}$.
Once φ is fixed, $\omega^{2} V$ can be absorbed if u is supported sufficiently close to ∂X.

A degenerate Carleman estimate

Similarly, the boundary integral contributes $\omega^{2}\|u\|_{L^{2}(\partial X)}^{2}$, so

$$
\omega^{3}\|u\|_{L^{2}(\partial X)}+\left\|P_{\varphi}(\omega) u\right\|_{L^{2}(X)}^{2} \gtrsim \omega\|u\|_{H_{b}^{1}(X)}^{2}+\omega^{3}\|u\|_{L^{2}(X)}^{2}
$$

for u supported near ∂X.
Combine with the interior estimates via cutoffs, completing the proof of the Theorem.

Eliminating the boundary term

Apply spacetime Green's formula to $v=e^{i \omega t} u$ with $\omega \in \mathbb{R}$.
Since ∂_{t} is normal to ∂M,

$$
\operatorname{Im} \int_{\partial X} \bar{v} \partial_{t} v d S_{\partial X}=\operatorname{Im} \int_{X} \bar{v} \square_{g} v d S_{X}
$$

Apply Cauchy-Schwarz to estimate

$$
e^{C \omega}\|u\|_{L^{2}(\partial X)} \leq C_{\varepsilon} e^{C^{\prime} \omega}\|P(\omega)\|_{L^{2}(X)}+\varepsilon\|u\|_{L^{2}(X)}
$$

and absorb the second term on RHS. Therefore,

$$
\|u\|_{H_{b}^{1}(X)} \leq e^{C \omega}\|P(\omega) u\|_{L^{2}(X)}
$$

Improving the weight

Upgrading H_{b}^{1} to H^{1} norm again uses the positivity of κ via

$$
\|u\|_{H^{1}(X)} \lesssim\|P(\omega) u\|_{L^{2}(X)}+(1+\omega)\|u\|_{L^{2}(X)} .
$$

The proof is exactly the same redshift argument that establishes energy boundedness statement or Fredholmness of $P(\omega)^{-1}$.

This proves the resolvent estimate, since $P(\omega)$ is Fredholm of index zero and we have shown that for $\omega \gg 1$,

$$
\|u\|_{H^{1}(X)} \lesssim e^{C \omega}\|P(\omega) u\|_{L^{2}(X)}
$$

Open questions

What can be said about rotating spacetimes? Here, ∂_{t} is not timelike in an ergoregion \Longrightarrow superradiance phenomena.

- Dold '16: there is a rotating spacetime (with additional timelike boundary) admitting resonances in lower half-plane (cf. Shlapentokh-Rothman, Moschidis)
- Under an priori energy boundedness assumption are there conditions under which you can exclude nonzero real resonances and prove resolvent bounds?

