## The Reeh-Schlieder Property and its Relevance for Scattering Theory

Maximilian Duell (joint work with Wojciech Dybalski)

Zentrum Mathematik Technische Universität München

Quantum Fields, Scattering, and Space-Time Horizons: Mathematical Challenges, Les Houches, May 23rd 2018







#### Interacting Quantum Field Theory, Non-Perturbatively

#### **Exercise 1** Quantum Mechanics:

- (a) Find  $\mathcal{H}$ , Hamiltonian  $H_0$  and Observables for free particles
- **(b)** Born probability interpretation  $|\Psi(x)|^2$
- (c) Add interaction  $H := H_0 + H_{int}$

#### **Exercise 2** Constructive Quantum Field Theory:

- (a) Discover Free Quantum Fields  $\phi_0(x)$ ,  $\mathcal{H}_0$ ,  $H_0$
- **(b)** Interpretation of  $(\phi_0, \mathcal{H}_0, H_0)$  in terms of free particles
- (c)  $\phi_0$  implements Einstein-Causality quantum mechanically

From now on may assume for simplicity spacetime-dim. 1+1

- (e) add Interaction  $H_{\text{int}}^R = \int_{|x| < R} dx : \phi^4(x)$ ; goal  $R \to \infty$
- (f) construct local algebras  $(R \to \infty$ , via hyperbolicity " $c < \infty$ ")
- (g)  $H^R = H_0 + H_{\text{int}}^R$  has ground state  $\Omega^R \xrightarrow{R \to \infty} 0$ .
- (h) Still  $\omega(A) := \lim_{R \to \infty} \langle \Omega^R, A\Omega^R \rangle$  yields a well-defined state, if restricted to the algebra of **local observables**.
- (j)  $\omega$  defines new Hilbert space  $\mathscr{H}$  on which interact. model lives (change of rep.), and where  $H = \lim_{R \to \infty} H^R$  is well-defined.





#### Overview

The Reeh-Schlieder Property

#### Particles and Scattering in Axiomatic QFT

Operator-Algebraic Framework and Basic Spectral Analysis Approach to Scattering via Reeh-Schlieder

Proof strategy for convergence via Reeh-Schlieder

#### Non-Locality of the Vacuum: Reeh-Schlieder Property

Local Observables  $A \in \mathfrak{A}(\mathcal{O}) \subset B(\mathcal{H}) \sim$  bounded functions of Fields  $\phi(x)$  smeared with test functions compactly supported in  $\mathcal{O}$ .

**Cyclicity** of the vacuum  $\Omega$ :  $\overline{\mathfrak{A}\Omega} = \mathscr{H}$  for  $\mathfrak{A} := \bigcup_{\mathcal{O}} \mathfrak{A}(\mathcal{O})$  (HK6)

Reeh-Schlieder (1961):  $\overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H}$  for any open  $\mathcal{O} \neq \emptyset$  (HK6)

Rem.:  $(\mathsf{HK6}^{\flat}) + \text{``Additivity''} \ \mathfrak{A} \subset \left(\bigvee_{x} \mathfrak{A}(\mathcal{O}_0 + x)\right)'' \Longrightarrow (\mathsf{HK6})$ 



#### Standard Proof strategy for Reeh-Schlieder

- Positivity of Energy, and Locality imply certain Analyticity!
- Free Scalar QF:  $(\phi_0(f) + \pi_0(g))\Omega = \omega_m^{-1/2} \tilde{f} + \omega_m^{1/2} \tilde{g}$ ,  $f, g \in \mathscr{S}(\mathbb{R}^s)$ . Then Anti-locality of  $\omega_m := (-\Delta^2 + m^2)^{\frac{1}{2}}$ ,  $T|_{\mathcal{O}} = 0$ ,  $\omega_m T|_{\mathcal{O}} = 0 \implies T = 0$ . (m > 0),  $T \in \mathscr{S}'(\mathbb{R}^s)$ , region  $\mathcal{O} \subset \mathbb{R}^s$ . (Segal, Goodman'65)
- ▶ General Argument (sketch):  $\Psi \in (\mathfrak{A}(\mathcal{O} + B_{\epsilon})\Omega)^{\perp}$  ( $\epsilon > 0$ ),

$$0 = \langle \Psi, \mathit{U}(t, \mathbf{x}) \mathit{A}\Omega \rangle \quad \forall \ (t, \mathbf{x}) \in \mathit{B}_{\epsilon}(0)$$

boundary value of  $f(t, \mathbf{x}) := \langle \Psi, \mathrm{e}^{\mathrm{i}tH - \mathrm{i}\mathbf{x}\cdot\mathbf{P}}A\Omega \rangle$ ,  $(t, \mathbf{x}) \in \mathbb{C}^{s+1}$ , f holomorphic on  $\{(t, \mathbf{x}) : \mathrm{Im}(t\omega - \mathbf{x} \cdot \mathbf{k}) > 0, (\omega, k) \in \bar{V}^+\}$ .  $\stackrel{(\mathsf{EotW Thm.})}{\Longrightarrow} f(t, \mathbf{x}) = 0 \ \forall (t, \mathbf{x}) \Longrightarrow \Psi \in (\bigcup \mathfrak{A}(\mathcal{O} + x)\Omega)^{\perp}$ .

Pathology of Minkowski background?

No! → Strohmaier-Verch-Wollenberg'02, Gérard-Wrochna'17

## Algebraic Framework for Local Quantum Theory Mathematical Objects

**Haag-Kastler QFT**  $(\mathfrak{A}, \alpha, \Omega, \mathscr{H})$  in the vacuum sector.

Described by mathematical entities...

- ► Hilbert space ℋ of pure states
- ightharpoonup distinguished *vacuum*  $\Omega \in \mathscr{H}$
- ▶ net of von Neumann algebras  $\mathbb{R}^{3+1} \supset \mathcal{O} \mapsto \mathfrak{A}(\mathcal{O}) \subset \mathrm{B}(\mathscr{H})$
- ightharpoonup space-time translations of states  $(t,\mathbf{x})\mapsto U(t,\mathbf{x})=e^{\mathrm{i}tH-\mathrm{i}\mathbf{x}\cdot\mathbf{P}}$
- ▶ translations of observables  $\alpha_x A := A(x) := U(x) A U(x)^*$

### Algebraic Framework for Local Quantum Theory

Haag-Kastler Axioms

... which are subject to

$$\begin{array}{lll} (\mathsf{HK1}) & \mathcal{O}_1 \subset \mathcal{O}_2 \Longrightarrow \mathfrak{A}(\mathcal{O}_1) \subset \mathfrak{A}(\mathcal{O}_2) & \text{(Isotony)} \\ (\mathsf{HK2}) & \mathcal{O}_1 \subset \mathcal{O}_2' \Longrightarrow \mathfrak{A}(\mathcal{O}_1) \subset \mathfrak{A}(\mathcal{O}_2)' & \text{(Locality)} \\ (\mathsf{HK3}) & \alpha_x \mathfrak{A}(\mathcal{O}) = \mathfrak{A}(\mathcal{O}+x), \ \forall x \in \mathbb{R}^4 & \text{(Covariance)} \\ (\mathsf{HK4}) & E_{(H,P)}(\{0\}) \mathscr{H} = \mathbb{C}\Omega & \text{(Uniqueness of }\Omega) \\ (\mathsf{HK5}) & \operatorname{supp} E_{(H,P)} \subset \bar{V}^+ & \text{(Spectrum Condition)} \\ (\mathsf{HK6}) & \overline{\mathfrak{A}(\mathcal{O})\Omega} = \mathscr{H} & \text{(Reeh-Schlieder Property)} \end{array}$$

#### Algebraic Framework for Local Quantum Theory

#### Example

Take physics-textbook scalar free field  $\phi(x^{\mu})$ ,  $\mathcal{O} \subset \mathbb{R}^{s+1}$  bounded.

$$\mathscr{H}:=\operatorname{symm.}$$
 Fock space  $\mathfrak{A}(\mathcal{O}):=\overline{\operatorname{span}\{\mathrm{e}^{\mathrm{i}\phi(f)}:f\in\mathscr{S}(\mathbb{R}^{s+1}),\ \operatorname{supp} f\subset\mathcal{O}\}}^{\mathrm{w.o.t.}}$   $\phi(f):=\int\mathrm{d}^{s+1}\!x\ f(x)\phi(x)$   $lpha_x(\mathrm{e}^{\mathrm{i}\phi(f)}):=\mathrm{e}^{\mathrm{i}\phi(T_xf)},\quad (T_xf)(y):=f(y-x)$   $\Omega:=\operatorname{Fock}$  vacuum



#### The Particle Spectrum



Vacuum  $\Omega \in \mathcal{H}$  translation invariant, Space-time translations  $\alpha_{\mathsf{x}}$  unitarily implemented

$$\mathscr{H} \ni \Psi \longmapsto U(t, \mathbf{x})\Psi$$

SNAG-Theorem  $\rightarrow$  strongly commut.  $\rightarrow$  **p** self-adjoint generators (H, P) $\hat{}$  energy-momentum op.

Spectral Resolution of  $(H, \mathbf{P})$  by POVM  $E(\Delta)$  for Borel  $\Delta \subset \mathbb{R}^4$ .

Def. (Wigner particle) Single-particle states are eigenvectors  $\Psi_1 \in \mathcal{H}$  of the relativistic mass operator  $M^2 = H^2 - P^2$ .

#### Scattering Theory: What is known rigorously?

► Haag '54, Lehmann-Symanzik-Zimmermann '54 Postulated Asymptotic Condition:

"Interacting 
$$\phi(x^{\mu}) \xrightarrow{x^0 \to \pm \infty} \phi_0^{\pm}(x^{\mu})$$
 free"

- ► Haag '59: establish "out"-products of 1-p. vectors Ruelle '62, Hepp '65 proof, isolated mass shell
- Herbst '71 isolated vacuum, "spectral condition" (SC),
  - i.e. need local operator  $A \in \mathfrak{A}(\mathcal{O})$  s.t.  $A\Omega$  has "nicely behaved" spectrum near mass shell
- ▶ Buchholz '77 **no** (SC) nor other conditions needed for m = 0 via Huygens' principle
- ▶ Dybalski '05 (SC) + non-isolated vacuum
- ▶ Duch, Herdegen '13 (SC) weakened,  $m \ge 0$





#### Preparing Single-Particle States

Single-particle states  $\Psi_1, \Psi_2 \in E_{\{M=m\}} \mathcal{H}$  are non-local objects:

$$\Psi_1 = E_m A\Omega = \chi(\frac{M^2 - m^2}{\epsilon}) A\Omega \sim A(\hat{\chi}_{\epsilon})\Omega, \quad (\chi \in \mathscr{S}, \epsilon \searrow 0).$$

Instead now fix **one** bounded space-time region  $\mathcal{O} \subset \mathbb{R}^4$ .

Reeh-Schlieder (HK6)  $\Rightarrow \exists (A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O}): \|A_{k\beta}\Omega - \Psi_k\| = \beta.$ 

Def.: We call a family of local operators  $(A_{k\beta})_{\beta>0}\subset\mathfrak{A}(\mathcal{O})$  s.t.

$$||A_{k\beta}\Omega - \Psi_k|| \le \beta$$
 and  $||A_{k\beta}|| \le \beta^{-\gamma}$ 

a Reeh-Schlieder family for  $\Psi_k$  of degree  $\gamma > 0$ .

#### Assumption: Strengthened Reeh-Schlieder Property (HK6<sup>‡</sup>)

Reeh-Schlieder families of **finite** degree generate a total subset of the single-particle space  $\mathscr{H}_1 \subset \mathscr{H}$ .

#### Strengthened Reeh-Schlieder yields Scattering States

Strengthened Reeh-Schlieder Property 
$$(\gamma > 0)$$
  $(A_{k\beta})_{\beta>0} \subset \mathfrak{A}(\mathcal{O})$ , s.t.  $||A_{k\beta}\Omega - \Psi_k|| \leq \beta$  and  $||A_{k\beta}|| \leq \beta^{-\gamma}$ 

Theorem (MD'15) Let  $\Psi_k$  be single-particle states admitting Reeh-Schlieder families  $A_{k\beta}$  of finite degree. Then for any regular positive-energy Klein-Gordon sol.  $f_k$  with disjoint velocity supports

$$\Psi_{\tau} := \mathcal{B}_{1\tau} \dots \mathcal{B}_{n\tau} \Omega \overset{\tau \to \pm \infty}{\longrightarrow} \Psi^{\pm}$$

The scalar products of any two such  $\Psi^+$ ,  $\Psi'^+$  can be computed using the Fock prescription (similarly for incoming states).

**Previous results** (Herbst '71, Dybalski '05, Herdegen '13) require spectral condition of Herbst-type, e.g. for some  $\epsilon > 0$ ,

$$\Psi_k = E_{\{M=m\}} A_k \Omega, \quad A_k \in \mathfrak{A}(\mathcal{O}), \quad \|E_{\{0 < |M-m| < \delta\}} A_k \Omega\| \le \delta^{\epsilon}.$$

# Construction of Scattering States

#### Reeh-Schlieder and Haag-Ruelle Creation Operators

**Reference Dynamics:** Klein-Gordon solutions  $f_k$  with disjointly and compactly supported wave packets  $\tilde{f}_k \in \mathscr{C}_c^{\infty}(\mathbb{R}^3)$  ("regular")

Creation-Operator Approximants: with  $\hat{\chi} \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{4} \setminus \bar{V}^{-})$ , set  $B_{k\beta} := A_{k\beta}(\chi) := \int \mathrm{d}^{4}x \; \chi(x) \; A_{k\beta}(x)$ ,

$$\mathcal{B}_{k au} := \int \mathrm{d}^3 x \; f_k( au, \mathbf{x}) \; B_{keta}( au, \mathbf{x}), \quad ( au \in \mathbb{R}).$$

**Haag-Ruelle/LSZ**:  $\mathcal{B}_{k\tau}\Omega \rightharpoonup \Psi_k'(f_k) := \tilde{f}_k(\mathbf{P})\Psi_k' \in \mathscr{H}_1$  for fixed small enough  $\beta$ .

Reeh-Schlieder: 
$$\beta = \beta(\tau) := |\tau|^{-\mu}$$
,  $\mu > 0$  then  $\mathcal{B}_{k\tau}\Omega \to \Psi_k(f_k)$ .

**Candidate Scattering States**: Limits  $\tau \to \pm \infty$  of  $\Psi_{\tau} := \mathcal{B}_{1\tau} \mathcal{B}_{2\tau} \Omega$ .

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\| = \left\| \int_{\tau_1}^{\tau_2} d\tau \, \partial_\tau \Psi_\tau \right\| \le \int_{\tau_1}^{\tau_2} d\tau \, \|\partial_\tau \Psi_\tau\| \stackrel{!}{<} \infty \quad (\tau_2 \to \pm \infty)$$

14/17

$$\begin{split} \|\Psi_{\tau_{N}} - \Psi_{\tau_{1}}\| &\leq \sum_{k} \left\|\mathcal{B}_{1\tau_{k+1}}\mathcal{B}_{2\tau_{k+1}}\Omega - \mathcal{B}_{1\tau_{k}}\mathcal{B}_{2\tau_{k}}\Omega\right\| \stackrel{!}{<} \infty \quad (\tau_{N} \to \pm \infty) \\ \|\Psi_{\tau_{2}} - \Psi_{\tau_{1}}\| &\leq \|\mathcal{B}_{1\tau_{2}}(\mathcal{B}_{2\tau_{2}} - \mathcal{B}_{2\tau_{1}})\Omega\| + \|(\mathcal{B}_{1\tau_{2}} - \mathcal{B}_{1\tau_{1}})\mathcal{B}_{2\tau_{1}}\Omega\| \\ &\leq \|\mathcal{B}_{1\tau_{2}}(\mathcal{B}_{2\tau_{2}} - \mathcal{B}_{2\tau_{1}})\Omega\| + \|\mathcal{B}_{2\tau_{1}}(\mathcal{B}_{1\tau_{2}} - \mathcal{B}_{1\tau_{1}})\Omega\| \quad (\star) \\ &\quad + (\text{commutators}) \qquad (\star\star) \end{split}$$

Recall:  $\mathcal{B}_{i\tau}\Omega \to \Psi_i \in \mathscr{H}_1$  (by construction)

For best possible summability as  $N \to \infty$  we should

- ▶ choose  $(\tau_k)_{k \in \mathbb{N}}$  as sparse as possible,  $\tau_k := (1+\rho)^k \tau_0$ ,  $\rho > 0$ 
  - ▶ control equal- and non-equal-time commutators in (\*\*)
  - $\triangleright$  control estimation of unbounded leftmost  $\mathcal{B}_{i\tau_k}$  in  $(\star)$

#### Tools (2) — Non-Equal-Time Commutator Estimates

$$f_k(t, \mathbf{x}) = \int \mathrm{d}^3k \, \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x} - \mathrm{i}\omega_m(\mathbf{k})t} \, \, \tilde{f}_k(\mathbf{k}), \, \, \, \tilde{f}_k \in \mathscr{C}_c^{\infty}(\mathbb{R}^s), \, \, \, \omega_m(\mathbf{k}) := \sqrt{\mathbf{k}^2 + m^2}$$

- ightharpoonup velocity  $\mathbf{v}(\mathbf{k}) = \frac{\mathbf{k}}{\omega_m(\mathbf{k})}$
- ightharpoonup velocity support  $\Gamma_f := \mathbf{v}(\operatorname{supp} \tilde{f})$
- ▶ propagation region  $\Upsilon_f := \{(t, \mathbf{v}t), \ \mathbf{v} \in \mathbf{\Gamma}_f, \ t \in \mathbb{R}\}$
- creation operators

$$A_{k\tau} = \int \mathrm{d}^3x \, f_k(\tau, \mathbf{x}) \, A_{k\beta}(\tau, \mathbf{x}),$$



Lemma: Let  $f_k$  be regular s.t.  $\Gamma_1 \cap \Gamma_2 = \emptyset$  and  $A_{k\beta}$  have finite degree.

$$\exists \, \rho > 0 \,\, \forall \,\, |\tau_1 - \tau_2| \leq \rho \, |\tau_1| : \quad \|[\mathcal{B}_{1\tau_1}, \mathcal{B}_{2\tau_2}]\| \leq \frac{C_N \, \|A_{1\beta(\tau_1)}\| \, \|A_{2\beta(\tau_2)}\|}{1 + |\tau_2|^N + |\tau_2|^N}$$

#### Assembling the Mathematical Arsenal

The reason why Discrete Cook works may be summarized:

Lemma (local difference estimate) Let  $A_{k\beta}$  be RS families of finite degree, and  $f_k$  regular positive-energy Klein-Gordon solutions with disjoint velocity supports. Then for sufficiently small scaling  $\mu>0$ ,  $\exists \; \rho>0 \; \forall \; |\tau_1-\tau_2|\leq \rho \, |\tau_1|$ ,

$$\|\Psi_{\tau_2} - \Psi_{\tau_1}\|^2 \le C_1 \sum_{k=1}^n \|\mathcal{B}_{k\tau_2}\Omega - \mathcal{B}_{k\tau_1}\Omega\|^2 + C_2 |\tau_1|^{-\delta}$$

**Proof** based on **non-equal-time** commutator estimates, **energy-bounds** [Buchholz'90], and **Clustering** arguments from [Dybalski'05], [Buchholz'77], and [Araki, Hepp, Ruelle'62].

## Outlook

#### Summary and Outlook

- Strengthened Reeh-Schlieder useful for Scattering Theory
- Discretized Cook's method improves Convergence, but also needs stronger technical tools: In particular, Non-Equal-Time Versions of
  - Commutator Estimates
  - Energy-Bounds
  - Clustering Estimates

#### Open Questions and Next Steps

- ▶ Any News for Physical Properties W<sup>±</sup> and S-Matrix?
- Quantitative Results on Reeh-Schlieder?
- Construct Asymptotic Observables (Araki-Haag Detectors)
- ▶ Relaxation of Localization Assumption  $(A_{\beta}) \subset \mathfrak{A}(\mathcal{O})$ 
  - $ightharpoonup \mathcal{O} o \mathcal{O}_{R(\beta)}$  e.g. with polynomially growing radii
  - $\mathcal{O} \to \mathcal{W} \stackrel{\sim}{\longrightarrow}$  unbounded wedge regions  $\mathcal{W}$  appear in context of
    - ▶ Polarization-free Generators [Borchers et al'01]
    - non-commutative flat space-times [Grosse, Lechner'07]

#### Thanks for your attention!

| Appendix: | Why | do | we | bother? |
|-----------|-----|----|----|---------|

#### Wave Operators and S-Matrix

Let  $\mathscr{F}$  denote Fock space over finite RS-degree 1-particle vectors and  $\mathscr{F}_{\mathsf{disj}} \subset \mathscr{F}$  the set of product states with disjoint  $\Gamma_k$ .

Def. (Møller op.) For  $\Psi_{\text{prod}} = \Psi_1(f_1)\Omega \otimes \ldots \otimes \Psi_n(f_n)\Omega \in \mathscr{F}_{\text{disj}}$ ,  $\Psi_k = \lim_{\beta \to 0} \tilde{f}_k(\mathbf{P}) A_{k\beta}\Omega$  define

$$W_{\pm}: \begin{cases} \mathscr{F}_{\mathsf{disj}} \longrightarrow \mathscr{H}, \\ \Psi_{\mathsf{prod}} \longmapsto \lim_{\tau \to \pm \infty} \mathcal{B}_{1\tau} \dots \mathcal{B}_{n\tau} \Omega. \end{cases}$$

The S-matrix is defined for  $\Psi, \Phi \in \mathscr{F}_{\mathsf{disj}}$  by  $\langle \Psi, \mathcal{S}\Phi \rangle := \langle W_+ \Psi, W_- \Phi \rangle \,.$ 

#### Plausibility of **Strengthened Reeh-Schlieder**?

- ▶ Rem. There are examples of QFT-models exhibiting  $A \in \mathfrak{A}(\mathcal{O})$  which violate the Herbst spectral regularity condition.
- Proposition. In scalar free field theory, there exist Reeh-Schlieder families  $A_{\beta}$  of arbitrarily small degree  $\gamma>0$ . Proof. Taking  $A_{\beta}:=\phi(f)\mathrm{e}^{-\beta|\phi(f)|^N}$  for compactly supported f has degree  $\gamma=1/N$  for any  $N\in2\mathbb{N}$  does the job.
- Conjecture:  $\Psi_1 \in \mathscr{H}_1$  single-particle state with **sufficiently** small Reeh-Schlieder degree  $\gamma < 1 \Longrightarrow \Psi_1$  non-interacting.
- ▶ Proposition. Assume there is a regular local  $A \in \mathfrak{A}(\mathcal{O})$  with Herbst-exponent  $\epsilon > 0$ . Then one can construct  $A_{\beta} \in \mathfrak{A}(\mathcal{O} + B_{\epsilon})$  s.t.

$$||E(\Delta)(A_{\beta}\Omega - \Psi_1)|| < C_{\Delta}\beta, \quad \ln ||A_{\beta}|| < \beta^{-\gamma}$$

for any compact  $\Delta \subset \mathbb{R}^{s+1}$ , with suitable  $C_{\Delta}$ , and  $\gamma \sim 1/\epsilon$ .