A quantitative description of Hawking radiation.

Drouot Alexis

Les Houches, May 22nd 2018

Quantum field theory

- Particles are represented by wave functions ψ.

Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.

Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator $U(t, 0)$, i.e.

$$
\psi_{t}=U(t, 0) \psi_{0}
$$

then the state dynamics must satisfy

$$
\begin{aligned}
\mathbb{E}_{t}\left(\psi_{t}\right)= & \mathbb{E}_{0}\left(\psi_{0}\right) \Leftrightarrow \mathbb{E}_{t}\left(U(t, 0) \psi_{0}\right)=\mathbb{E}_{0}\left(\psi_{0}\right) \\
& \Leftrightarrow \mathbb{E}_{t}\left(\psi_{t}\right)=\mathbb{E}_{0}\left(U(0, t) \psi_{t}\right)
\end{aligned}
$$

Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator $U(t, 0)$, i.e.

$$
\psi_{t}=U(t, 0) \psi_{0}
$$

then the state dynamics must satisfy

$$
\begin{aligned}
\mathbb{E}_{t}\left(\psi_{t}\right)= & \mathbb{E}_{0}\left(\psi_{0}\right) \Leftrightarrow \mathbb{E}_{t}\left(U(t, 0) \psi_{0}\right)=\mathbb{E}_{0}\left(\psi_{0}\right) \\
& \Leftrightarrow \mathbb{E}_{t}\left(\psi_{t}\right)=\mathbb{E}_{0}\left(U(0, t) \psi_{t}\right)
\end{aligned}
$$

- If you want to study the dynamics of quantum fields, you must study the backward propagation given by $U(0, t)$.

Quantum field theory

- Particles are represented by wave functions ψ.
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator $U(t, 0)$, i.e.

$$
\psi_{t}=U(t, 0) \psi_{0}
$$

then the state dynamics must satisfy

$$
\begin{aligned}
\mathbb{E}_{t}\left(\psi_{t}\right)= & \mathbb{E}_{0}\left(\psi_{0}\right) \Leftrightarrow \mathbb{E}_{t}\left(U(t, 0) \psi_{0}\right)=\mathbb{E}_{0}\left(\psi_{0}\right) \\
& \Leftrightarrow \mathbb{E}_{t}\left(\psi_{t}\right)=\mathbb{E}_{0}\left(U(0, t) \psi_{t}\right)
\end{aligned}
$$

- If you want to study the dynamics of quantum fields, you must study the backward propagation given by $U(0, t)$.
- This reduces the analysis of quantum fields to (a) a PDE problem and (b) a (possibly difficult) computation.

The Schwarzschild-de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.

The Schwarzschild-de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.
- It is the manifold $\mathbb{R} \times\left(r_{-}, r_{+}\right) \times S^{2}$, with Lorentzian metric

$$
\begin{gathered}
g=\frac{\Delta_{r}}{r^{2}} d t^{2}-\frac{r^{2}}{\Delta_{r}} d r^{2}-r^{2} d \sigma_{S^{2}}(\omega) \\
\Delta_{r}=r^{2}\left(1-\frac{\Lambda r^{2}}{3}\right)-2 M_{0} r, \quad \Lambda, M>0 \\
\Delta_{r}\left(r_{ \pm}\right)=0, \quad \Delta_{r}>0 \text { on }\left(r_{-}, r_{+}\right)
\end{gathered}
$$

The Schwarzschild-de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.
- It is the manifold $\mathbb{R} \times\left(r_{-}, r_{+}\right) \times S^{2}$, with Lorentzian metric

$$
\begin{gathered}
g=\frac{\Delta_{r}}{r^{2}} d t^{2}-\frac{r^{2}}{\Delta_{r}} d r^{2}-r^{2} d \sigma_{S^{2}}(\omega) \\
\Delta_{r}=r^{2}\left(1-\frac{\Lambda r^{2}}{3}\right)-2 M_{0} r, \quad \Lambda, M>0 \\
\Delta_{r}\left(r_{ \pm}\right)=0, \quad \Delta_{r}>0 \text { on }\left(r_{-}, r_{+}\right)
\end{gathered}
$$

- This metric can be extended beyond the horizons $r=r_{+}$and $r=r_{-}$.

The Schwarzschild-de Sitter space

- It describes spherically symmetric black holes with positive cosmological constant.
- It is the manifold $\mathbb{R} \times\left(r_{-}, r_{+}\right) \times S^{2}$, with Lorentzian metric

$$
\begin{gathered}
g=\frac{\Delta_{r}}{r^{2}} d t^{2}-\frac{r^{2}}{\Delta_{r}} d r^{2}-r^{2} d \sigma_{S^{2}}(\omega) \\
\Delta_{r}=r^{2}\left(1-\frac{\Lambda r^{2}}{3}\right)-2 M_{0} r, \quad \Lambda, M>0 \\
\Delta_{r}\left(r_{ \pm}\right)=0, \quad \Delta_{r}>0 \text { on }\left(r_{-}, r_{+}\right)
\end{gathered}
$$

- This metric can be extended beyond the horizons $r=r_{+}$and $r=r_{-}$.
- The surface gravities of the black hole and cosmological horizons are characteristic parameters given by:

$$
\kappa_{ \pm}=\frac{\left|\Delta_{r}^{\prime}\left(r_{ \pm}\right)\right|}{2 r_{ \pm}^{2}}
$$

Collapsing star in SdS

- We set another system of coordinates \mathcal{S}_{*} by (t, x, ω) with

$$
\frac{d x}{d r}=\frac{r^{2}}{\Delta_{r}} \Rightarrow g=\frac{\Delta_{r}}{r^{2}}\left(d t^{2}-d x^{2}\right)-r^{2} d \sigma_{S^{2}}(\omega)
$$

Radial geodesics propagate along $t \pm x=c t e$ and r_{+}, r_{-}get send to $+\infty$ and $-\infty$, respectively.

Collapsing star in SdS

- We set another system of coordinates \mathcal{S}_{*} by (t, x, ω) with

$$
\frac{d x}{d r}=\frac{r^{2}}{\Delta_{r}} \Rightarrow g=\frac{\Delta_{r}}{r^{2}}\left(d t^{2}-d x^{2}\right)-r^{2} d \sigma_{S^{2}}(\omega)
$$

Radial geodesics propagate along $t \pm x=c t e$ and r_{+}, r_{-}get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t)=-t-A e^{-2 \kappa_{-} t}+O\left(e^{-4 \kappa_{-} t}\right)$.

Collapsing star in SdS

- We set another system of coordinates \mathcal{S}_{*} by (t, x, ω) with

$$
\frac{d x}{d r}=\frac{r^{2}}{\Delta_{r}} \Rightarrow g=\frac{\Delta_{r}}{r^{2}}\left(d t^{2}-d x^{2}\right)-r^{2} d \sigma_{S^{2}}(\omega)
$$

Radial geodesics propagate along $t \pm x=c t e$ and r_{+}, r_{-}get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t)=-t-A e^{-2 \kappa_{-} t}+O\left(e^{-4 \kappa_{-} t}\right)$.
- A collapsing star is a timelike submanifold

$$
\mathcal{B}=\{(t, x, \omega): x=z(t)\}
$$

where $z(t)=-t-A e^{-2 \kappa-t}+O\left(e^{-4 \kappa-t}\right)$ is a smooth decreasing function.

Collapsing star in SdS

- We set another system of coordinates \mathcal{S}_{*} by (t, x, ω) with

$$
\frac{d x}{d r}=\frac{r^{2}}{\Delta_{r}} \Rightarrow g=\frac{\Delta_{r}}{r^{2}}\left(d t^{2}-d x^{2}\right)-r^{2} d \sigma_{S^{2}}(\omega)
$$

Radial geodesics propagate along $t \pm x=c t e$ and r_{+}, r_{-}get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t)=-t-A e^{-2 \kappa_{-} t}+O\left(e^{-4 \kappa_{-} t}\right)$.
- A collapsing star is a timelike submanifold

$$
\mathcal{B}=\{(t, x, \omega): x=z(t)\}
$$

where $z(t)=-t-A e^{-2 \kappa-t}+O\left(e^{-4 \kappa-t}\right)$ is a smooth decreasing function.

- We want to study quantum fields in this space. We need an evolution equation for particles.

The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$
\left(\square_{g}+m^{2}\right) u=0
$$

The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$
\left(\square_{g}+m^{2}\right) u=0
$$

- We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time $T \rightarrow+\infty$:

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left.u\right|_{\mathcal{B}}=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right) .
\end{array}\right.
$$

This is the mathematical basis for Hawking radiation.

The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$
\left(\square_{g}+m^{2}\right) u=0
$$

- We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time $T \rightarrow+\infty$:

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left.u\right|_{\mathcal{B}}=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right)
\end{array}\right.
$$

This is the mathematical basis for Hawking radiation.

- We will need to (a) study asymptotic of $u(t=0)$ when $T \rightarrow+\infty$ and (b) compute a certain functional $\mathbb{E}(u(t=0))$ where \mathbb{E} is the vacuum quantum state.

The evolution equation

- We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$
\left(\square_{g}+m^{2}\right) u=0
$$

- We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time $T \rightarrow+\infty$:

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left.u\right|_{\mathcal{B}}=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right) .
\end{array}\right.
$$

This is the mathematical basis for Hawking radiation.

- We will need to (a) study asymptotic of $u(t=0)$ when $T \rightarrow+\infty$ and (b) compute a certain functional $\mathbb{E}(u(t=0))$ where \mathbb{E} is the vacuum quantum state.
- We will focus only on (a) in this talk.

Asymptotic of scalar fields

Theorem [D '17]
Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right) \\
\left.u\right|_{\mathcal{B}}=0 .
\end{array}\right.
$$

Asymptotic of scalar fields

Theorem [D '17]

Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right) \\
\left.u\right|_{\mathcal{B}}=0 .
\end{array}\right.
$$

There exist scattering fields (see later) u_{-}, u_{+}smooth and exponentially decaying; and $c_{0}>0$ such that for t near 0 ,

$$
\begin{aligned}
u(0, x, \omega)= & \frac{r_{-}}{r} u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{x}{e^{-\kappa_{-} T}}\right), \omega\right) \\
& +u_{+}(T-x, \omega)+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right) .
\end{aligned}
$$

(κ_{-}is the surface gravity of the black-hole.)

Pictorial representation

Comments

- The black hole temperature $\kappa_{-} /(2 \pi)$ emerges.

Comments

- The black hole temperature $\kappa_{-} /(2 \pi)$ emerges.
- The fields u_{-}and u_{+}are Freidlander's radiation fields; they do not depend on \mathcal{B}.

Comments

- The black hole temperature $\kappa_{-} /(2 \pi)$ emerges.
- The fields u_{-}and u_{+}are Freidlander's radiation fields; they do not depend on \mathcal{B}.
- Thus the result gives exponential convergence to equilibrium. The rate c_{0} can be computed explicitly: it depends only on κ_{-}, κ_{+}and the first resonance of the K-G equation on the black-hole background.

The Hawking effect

- Let $\mathbb{E}^{\mathbb{H}, \beta}$ the Bose-Einstein state at temperature $1 / \beta$ with respect to a Hamiltonian \mathbb{H}.

The Hawking effect

- Let $\mathbb{E}^{\mathbb{H}, \beta}$ the Bose-Einstein state at temperature $1 / \beta$ with respect to a Hamiltonian \mathbb{H}.
- Let \mathbb{H}_{0} be the black-hole Klein-Gordon Hamiltonian in \mathcal{S}_{*} : the $\mathrm{K}-\mathrm{G}$ equation takes the form $\left(\partial_{t}^{2}-\mathbb{H}_{0}\right) u=0$.

The Hawking effect

- Let $\mathbb{E}^{\mathbb{H}, \beta}$ the Bose-Einstein state at temperature $1 / \beta$ with respect to a Hamiltonian \mathbb{H}.
- Let \mathbb{H}_{0} be the black-hole Klein-Gordon Hamiltonian in \mathcal{S}_{*} : the $\mathrm{K}-\mathrm{G}$ equation takes the form $\left(\partial_{t}^{2}-\mathbb{H}_{0}\right) u=0$.
- Thanks to the theorem:

$$
\begin{gathered}
\mathbb{E}^{\mathbb{H}_{0}, 2 \pi / \kappa_{+}}\left(U(0, T)\left(u_{0}, u_{1}\right)\right) \\
=\mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{+}}\left(u_{+}, D_{x} u_{+}\right) \cdot \mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{-}}\left(u_{-}, D_{x} u_{-}\right) \cdot\left(1+O\left(e^{-c_{0} T}\right)\right)
\end{gathered}
$$

The Hawking effect

- Let $\mathbb{E}^{\mathbb{H}, \beta}$ the Bose-Einstein state at temperature $1 / \beta$ with respect to a Hamiltonian \mathbb{H}.
- Let \mathbb{H}_{0} be the black-hole Klein-Gordon Hamiltonian in \mathcal{S}_{*} : the K-G equation takes the form $\left(\partial_{t}^{2}-\mathbb{H}_{0}\right) u=0$.
- Thanks to the theorem:

$$
\begin{gathered}
\mathbb{E}^{\mathbb{H}_{0}, 2 \pi / \kappa_{+}}\left(U(0, T)\left(u_{0}, u_{1}\right)\right) \\
=\mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{+}}\left(u_{+}, D_{x} u_{+}\right) \cdot \mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{-}}\left(u_{-}, D_{x} u_{-}\right) \cdot\left(1+O\left(e^{-c_{0} T}\right)\right) .
\end{gathered}
$$

- Interpretation: at time 0 , the quantum state is that of a Bose-Einstein gas with cosmological background temperature $\kappa_{+} /(2 \pi)$.

The Hawking effect

- Let $\mathbb{E}^{\mathbb{H}, \beta}$ the Bose-Einstein state at temperature $1 / \beta$ with respect to a Hamiltonian \mathbb{H}.
- Let \mathbb{H}_{0} be the black-hole Klein-Gordon Hamiltonian in \mathcal{S}_{*} : the $\mathrm{K}-\mathrm{G}$ equation takes the form $\left(\partial_{t}^{2}-\mathbb{H}_{0}\right) u=0$.
- Thanks to the theorem:

$$
\begin{gathered}
\mathbb{E}^{\mathbb{H}_{0}, 2 \pi / \kappa_{+}}\left(U(0, T)\left(u_{0}, u_{1}\right)\right) \\
=\mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{+}}\left(u_{+}, D_{x} u_{+}\right) \cdot \mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{-}}\left(u_{-}, D_{x} u_{-}\right) \cdot\left(1+O\left(e^{-c_{0} T}\right)\right) .
\end{gathered}
$$

- Interpretation: at time 0 , the quantum state is that of a Bose-Einstein gas with cosmological background temperature $\kappa_{+} /(2 \pi)$.
- As time goes, this state splits to two Bose-Einstein states with respect to the asymptotic Hamiltonians D_{x}^{2}.

The Hawking effect

- Let $\mathbb{E}^{\mathbb{H}, \beta}$ the Bose-Einstein state at temperature $1 / \beta$ with respect to a Hamiltonian \mathbb{H}.
- Let \mathbb{H}_{0} be the black-hole Klein-Gordon Hamiltonian in \mathcal{S}_{*} : the $\mathrm{K}-\mathrm{G}$ equation takes the form $\left(\partial_{t}^{2}-\mathbb{H}_{0}\right) u=0$.
- Thanks to the theorem:

$$
\begin{gathered}
\mathbb{E}^{\mathbb{H}_{0}, 2 \pi / \kappa_{+}}\left(U(0, T)\left(u_{0}, u_{1}\right)\right) \\
=\mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{+}}\left(u_{+}, D_{x} u_{+}\right) \cdot \mathbb{E}^{D_{x}^{2}, 2 \pi / \kappa_{-}}\left(u_{-}, D_{x} u_{-}\right) \cdot\left(1+O\left(e^{-c_{0} T}\right)\right)
\end{gathered}
$$

- Interpretation: at time 0 , the quantum state is that of a Bose-Einstein gas with cosmological background temperature $\kappa_{+} /(2 \pi)$.
- As time goes, this state splits to two Bose-Einstein states with respect to the asymptotic Hamiltonians D_{x}^{2}.
- The first one sees no change in temperature while the second one acquires the black-hole temperature $\kappa_{-} /(2 \pi)$.

Previous related results

- Bachelot late '90s, Melnyk early '00s - emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild-de Sitter black holes.

Previous related results

- Bachelot late '90s, Melnyk early '00s - emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild-de Sitter black holes.
- Häfner '09 - emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.

Previous related results

- Bachelot late '90s, Melnyk early '00s - emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild-de Sitter black holes.
- Häfner '09 - emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier-Gérard '13 - Hawking effect for interacting fermions

Previous related results

- Bachelot late '90s, Melnyk early '00s - emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild-de Sitter black holes.
- Häfner '09 - emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier-Gérard '13 - Hawking effect for interacting fermions
- This work provides the first rates of convergence. The previous proofs were not fully constructive.

Previous related results

- Bachelot late '90s, Melnyk early '00s - emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild-de Sitter black holes.
- Häfner '09 - emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier-Gérard '13 - Hawking effect for interacting fermions
- This work provides the first rates of convergence. The previous proofs were not fully constructive.
- We take full advantage of recent decay results for waves in black hole spacetimes. For the dS black-holes, see Bachelot-Motet-Bachelot '93, Sa-Barreto-Zworski '97 (resonances), Bony-Häfner '07 (exponential decay), Dafermos-Rodnianski '07 (polynomial decay), Melrose-Sa-Barreto-Vasy '08, Vasy '13 (geometric methods), Dyatlov '11-' 12 (rotating black holes), Hintz-Vasy '14-(non-linear results),...

New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by $\hat{\mathcal{S}}$.

New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by $\hat{\mathcal{S}}$.
- Set

$$
\hat{t}=t-F(r), F(r) \sim-\frac{1}{2 \kappa_{ \pm}} \ln \left|r-r_{ \pm}\right| \text {for } r \text { near } r_{ \pm}
$$

In (\hat{t}, r, ω) the metric is smooth across $r=r_{ \pm}$.

New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by $\hat{\mathcal{S}}$.
- Set

$$
\hat{t}=t-F(r), F(r) \sim-\frac{1}{2 \kappa_{ \pm}} \ln \left|r-r_{ \pm}\right| \text {for } r \text { near } r_{ \pm}
$$

In (\hat{t}, r, ω) the metric is smooth across $r=r_{ \pm}$.

- We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.

New system of coordinates

- It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by $\hat{\mathcal{S}}$.
- Set

$$
\hat{t}=t-F(r), F(r) \sim-\frac{1}{2 \kappa_{ \pm}} \ln \left|r-r_{ \pm}\right| \text {for } r \text { near } r_{ \pm}
$$

In (\hat{t}, r, ω) the metric is smooth across $r=r_{ \pm}$.

- We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.
- After possibly rescaling, in $\hat{\mathcal{S}}$ the collapsing star is given by

$$
\mathcal{B}=\{(t, z(\hat{t}), \omega)\}, \quad z(\hat{t})=r_{-}-\alpha(\hat{t}-1)+O(\hat{t}-1)^{2}
$$

Propagation in $\hat{\mathcal{S}}$

Why study propagation in $\hat{\mathcal{S}}$ instead of \mathcal{S}_{*} ?

- Due to the blueshift the wave gets localized on a region of size

$$
\Delta r \rightarrow 0 \text { as } T \rightarrow \infty .
$$

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \rightarrow \infty$.

Why study propagation in $\hat{\mathcal{S}}$ instead of \mathcal{S}_{*} ?

- Due to the blueshift the wave gets localized on a region of size

$$
\Delta r \rightarrow 0 \text { as } T \rightarrow \infty
$$

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \rightarrow \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in[0,1]$ i.e. only for fixed time.

Why study propagation in $\hat{\mathcal{S}}$ instead of \mathcal{S}_{*} ?

- Due to the blueshift the wave gets localized on a region of size

$$
\Delta r \rightarrow 0 \text { as } T \rightarrow \infty
$$

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \rightarrow \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in[0,1]$ i.e. only for fixed time.
- A standard wave WKB parametrix for $\hat{t} \in[0,1]$ allows to analyze the impact of the boundary.

Why study propagation in $\hat{\mathcal{S}}$ instead of \mathcal{S}_{*} ?

- Due to the blueshift the wave gets localized on a region of size

$$
\Delta r \rightarrow 0 \text { as } T \rightarrow \infty
$$

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \rightarrow \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in[0,1]$ i.e. only for fixed time.
- A standard wave WKB parametrix for $\hat{t} \in[0,1]$ allows to analyze the impact of the boundary.
- In \mathcal{S}_{*} the boundary affects the propagation for $t \in[0, T / 2]$. A harder high frequency analysis is required: it needs to work for for time intervals of size $T / 2 \rightarrow \infty$.

Why study propagation in $\hat{\mathcal{S}}$ instead of \mathcal{S}_{*} ?

- Due to the blueshift the wave gets localized on a region of size

$$
\Delta r \rightarrow 0 \text { as } T \rightarrow \infty
$$

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \rightarrow \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in[0,1]$ i.e. only for fixed time.
- A standard wave WKB parametrix for $\hat{t} \in[0,1]$ allows to analyze the impact of the boundary.
- In \mathcal{S}_{*} the boundary affects the propagation for $t \in[0, T / 2]$. A harder high frequency analysis is required: it needs to work for for time intervals of size $T / 2 \rightarrow \infty$.
- Now we study two separate problems: propagation for $t \in[1, T]$ (before reflection) and propagation for $t \in[0,1]$ (after reflection).

Backward scattering fields

- Goal: understand the behavior as $\hat{t} \rightarrow-\infty$ to solutions of $\left(\square+m^{2}\right) u=0$.

Backward scattering fields

- Goal: understand the behavior as $\hat{t} \rightarrow-\infty$ to solutions of $\left(\square+m^{2}\right) u=0$.
- The equation is invariant under time-reversion $t \mapsto-t$. It suffices to understand forwards scattering, then reverse time.

Backward scattering fields

- Goal: understand the behavior as $\hat{t} \rightarrow-\infty$ to solutions of $\left(\square+m^{2}\right) u=0$.
- The equation is invariant under time-reversion $t \mapsto-t$. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface $\hat{t}=-\infty$ becomes $\left\{r=r_{-}\right\} \cup\left\{r=r_{+}\right\}$.

Backward scattering fields

- Goal: understand the behavior as $\hat{t} \rightarrow-\infty$ to solutions of $\left(\square+m^{2}\right) u=0$.
- The equation is invariant under time-reversion $t \mapsto-t$. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface $\hat{t}=-\infty$ becomes $\left\{r=r_{-}\right\} \cup\left\{r=r_{+}\right\}$.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.

Backward scattering fields

- Goal: understand the behavior as $\hat{t} \rightarrow-\infty$ to solutions of $\left(\square+m^{2}\right) u=0$.
- The equation is invariant under time-reversion $t \mapsto-t$. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface $\hat{t}=-\infty$ becomes $\left\{r=r_{-}\right\} \cup\left\{r=r_{+}\right\}$.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.
- This constructs u_{+}and u_{-}. Melrose-Sá-Barreto-Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.

Backward scattering fields

- Goal: understand the behavior as $\hat{t} \rightarrow-\infty$ to solutions of $\left(\square+m^{2}\right) u=0$.
- The equation is invariant under time-reversion $t \mapsto-t$. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface $\hat{t}=-\infty$ becomes $\left\{r=r_{-}\right\} \cup\left\{r=r_{+}\right\}$.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.
- This constructs u_{+}and u_{-}. Melrose-Sá-Barreto-Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.
- This strategy is due to Friedlander '80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard-Georgescu-Häfner '14-'17, Nicolas '17, Dafermos-Rodnianski-Shlapentokh-Rothman '17.

Backward scattering fields

Theorem

Let u be a solution written in $\hat{\mathcal{S}}$ of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(\hat{t}=T)=\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}
\end{array}\right.
$$

Let $\tilde{u}(\hat{t}, r, \omega)=u(-\hat{t}-2 F(r)+T, r, \omega)$ (the time-reversed solution).

Backward scattering fields

Theorem

Let u be a solution written in $\hat{\mathcal{S}}$ of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(\hat{t}=T)=\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}
\end{array}\right.
$$

Let $\tilde{u}(\hat{t}, r, \omega)=u(-\hat{t}-2 F(r)+T, r, \omega)$ (the time-reversed solution). Set $v_{ \pm}$be the traces of \tilde{u} on the horizons $r_{ \pm}$:

$$
v_{ \pm}(x, \omega)=\tilde{u}\left(x, r_{ \pm}, \omega\right)
$$

Then for some $\nu>0$,

Backward scattering fields

Theorem

Let u be a solution written in $\hat{\mathcal{S}}$ of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(\hat{t}=T)=\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}
\end{array}\right.
$$

Let $\tilde{u}(\hat{t}, r, \omega)=u(-\hat{t}-2 F(r)+T, r, \omega)$ (the time-reversed solution). Set $v_{ \pm}$be the traces of \tilde{u} on the horizons $r_{ \pm}$:

$$
v_{ \pm}(x, \omega)=\tilde{u}\left(x, r_{ \pm}, \omega\right)
$$

Then for some $\nu>0$,

- $v_{ \pm}(x, \omega)=0$ for $x \leq 0$ and $v_{ \pm}(x, \omega)=O\left(e^{-\nu x}\right)$ for large x.

Backward scattering fields

Theorem

Let u be a solution written in $\hat{\mathcal{S}}$ of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(\hat{t}=T)=\left(u_{0}, u_{1}\right) \in C_{0}^{\infty}
\end{array}\right.
$$

Let $\tilde{u}(\hat{t}, r, \omega)=u(-\hat{t}-2 F(r)+T, r, \omega)$ (the time-reversed solution). Set $v_{ \pm}$be the traces of \tilde{u} on the horizons $r_{ \pm}$:

$$
v_{ \pm}(x, \omega)=\tilde{u}\left(x, r_{ \pm}, \omega\right)
$$

Then for some $\nu>0$,

- $v_{ \pm}(x, \omega)=0$ for $x \leq 0$ and $v_{ \pm}(x, \omega)=O\left(e^{-\nu x}\right)$ for large x.
- $u(\hat{t}, r, \omega)-\left(v_{+}+v_{-}\right)(T-\hat{t}-2 F(r), \omega)=O\left(e^{-\nu T}\right)$ as $T \rightarrow+\infty$.

Semiclassical description of the blueshift effect

- Near the black holes, asymptotically backwards waves look like

$$
u_{-}(T-2 F(r), \omega)
$$

where $u_{-}(x, \omega)=0$ for $x \leq 0$ and decays exponentially for $x \geq 0$.

Semiclassical description of the blueshift effect

- Near the black holes, asymptotically backwards waves look like

$$
u_{-}(T-2 F(r), \omega)
$$

where $u_{-}(x, \omega)=0$ for $x \leq 0$ and decays exponentially for $x \geq 0$.

- Using $F(r) \sim-\left(2 \kappa_{-}\right)^{-1} \ln \left(r-r_{-}\right)$near $r=r_{-}$,

$$
\begin{aligned}
u_{-}(T-2 F(r), \omega) & \sim u_{-}\left(T+\frac{1}{\kappa_{-}} \ln \left(r-r_{-}\right), \omega\right) \\
& =u_{-}\left(\ln \left(\frac{r-r_{-}}{h}\right), \omega\right)
\end{aligned}
$$

Above $h=e^{-\kappa_{-} T} \rightarrow 0$ is a small parameter.

Semiclassical description of the blueshift effect

- Near the black holes, asymptotically backwards waves look like

$$
u_{-}(T-2 F(r), \omega)
$$

where $u_{-}(x, \omega)=0$ for $x \leq 0$ and decays exponentially for $x \geq 0$.

- Using $F(r) \sim-\left(2 \kappa_{-}\right)^{-1} \ln \left(r-r_{-}\right)$near $r=r_{-}$,

$$
\begin{aligned}
u_{-}(T-2 F(r), \omega) & \sim u_{-}\left(T+\frac{1}{\kappa_{-}} \ln \left(r-r_{-}\right), \omega\right) \\
& =u_{-}\left(\ln \left(\frac{r-r_{-}}{h}\right), \omega\right)
\end{aligned}
$$

Above $h=e^{-\kappa_{-} T} \rightarrow 0$ is a small parameter.

- The semiclassical wavefront set of the h-dependent distribution

$$
u_{-}\left(\ln \left(\frac{r-r_{-}}{h}\right), \omega\right)
$$

satisfies $\mathrm{WF}_{h} \subset\left\{\left(r_{-}, \omega, \xi, 0\right)\right\}$. This gives a semiclassical description of the blueshift effect.

Study of the reflection

Study of the reflection

What does it tell us?

- No diffraction.

What does it tell us?

- No diffraction.
- Essentially one reflection that occurs at $r=r_{-}, \hat{t}=1$.

What does it tell us?

- No diffraction.
- Essentially one reflection that occurs at $r=r_{-}, \hat{t}=1$.
- As a consequence we can study the boundary problem near $r=r_{-}, \hat{t}=1$. There the K-G operator is well approximated by a constant coefficients operator with symbol

$$
\sigma\left(\square_{g}\right)\left(1, r_{-}, 0 ; \tau, \xi, 0\right)
$$

The angular part does not matter because the reflecting data is only supported near radial frequencies.

What does it tell us?

- No diffraction.
- Essentially one reflection that occurs at $r=r_{-}, \hat{t}=1$.
- As a consequence we can study the boundary problem near $r=r_{-}, \hat{t}=1$. There the K-G operator is well approximated by a constant coefficients operator with symbol

$$
\sigma\left(\square_{g}\right)\left(1, r_{-}, 0 ; \tau, \xi, 0\right)
$$

The angular part does not matter because the reflecting data is only supported near radial frequencies.

- This gives a good enough approximation of u after reflection for times in $[1-c h, 1]$ for any fixed $c>0$.

Zoom in a box of size $O(h)$ near $r=r_{-}$and $\hat{t}=1$

Global study of the reflection

Global study of the reflection

- We must show that the wave reflects essentially only once.

Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$ without boundary, for times in $[0,1-c h]$, and initial data $u(\hat{t}=1-c h)$.

Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$ without boundary, for times in $[0,1-c h]$, and initial data $u(\hat{t}=1-c h)$.
- As the initial data is localized in frequencies $\sim h^{-1}$, we can construct a WKB approximate solution for $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$.

Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$ without boundary, for times in $[0,1-c h]$, and initial data $u(\hat{t}=1-c h)$.
- As the initial data is localized in frequencies $\sim h^{-1}$, we can construct a WKB approximate solution for $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$.
- The trace of the approximate solution is $O(h)$ on \mathcal{B}.

Global study of the reflection

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$ without boundary, for times in $[0,1-c h]$, and initial data $u(\hat{t}=1-c h)$.
- As the initial data is localized in frequencies $\sim h^{-1}$, we can construct a WKB approximate solution for $\left(\square+m^{2}\right) u_{\mathrm{WB}}=0$.
- The trace of the approximate solution is $O(h)$ on \mathcal{B}.
- By Hörmander's hyperbolic energy estimates, u (the solution with boundary) is well approximated by this explicit WKB parametrix for $t \in[0,1-c h]$, with error of order $O(h)=O\left(e^{-\kappa_{-} T}\right)$.

Global study of the reflection

- Going back to \mathcal{S}_{*}, we get the theorem:

Theorem [D '17]

If u solves

$$
\left\{\begin{aligned}
&\left(\square_{g}+m^{2}\right) u=0 \\
&\left(u, \partial_{t} u\right)(T) \stackrel{(}{=}\left(u_{0}, u_{1}\right) \in C_{0}^{\infty},\left.\quad u\right|_{\mathcal{B}}=0
\end{aligned}\right.
$$

then there exist u_{-}, u_{+}smooth and exponentially decaying; and $c_{0}>0$ such that for t near 0 , in \mathcal{S}_{*}

$$
\begin{gathered}
u(0, x, \omega)=\frac{r_{-}}{r} u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{x}{e^{-\kappa_{-} T}}\right), \omega\right) \text { WKB part from } B H \\
+u_{+}(T-x, \omega) \text { scattering part to } C H+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right) .
\end{gathered}
$$

Global study of the reflection

- Going back to \mathcal{S}_{*}, we get the theorem:

Theorem [D '17]

If u solves

$$
\left\{\begin{aligned}
&\left(\square_{g}+m^{2}\right) u=0 \\
&\left(u, \partial_{t} u\right)(T) \stackrel{(}{=}\left(u_{0}, u_{1}\right) \in C_{0}^{\infty},\left.\quad u\right|_{\mathcal{B}}=0
\end{aligned}\right.
$$

then there exist u_{-}, u_{+}smooth and exponentially decaying; and $c_{0}>0$ such that for t near 0 , in \mathcal{S}_{*}

$$
\begin{gathered}
u(0, x, \omega)=\frac{r_{-}}{r} u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{x}{e^{-\kappa_{-} T}}\right), \omega\right) \text { WKB part from } B H \\
+u_{+}(T-x, \omega) \text { scattering part to } C H+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right)
\end{gathered}
$$

- This describes the PDE part of the problem. A delicate calculation remains to derive Hawking's radiation from here.

Extensions to non-symmetric backgrounds

- The simplest class consists of metric of the form

$$
g=g_{0}+\varepsilon \eta
$$

where g_{0} is the SdS metric; $\eta=\eta(r, \omega, d r, d \omega)$ is smooth and vanishes in neighborhoods of $r_{ \pm}$; and ε is small.

Extensions to non-symmetric backgrounds

- The simplest class consists of metric of the form

$$
g=g_{0}+\varepsilon \eta,
$$

where g_{0} is the SdS metric; $\eta=\eta(r, \omega, d r, d \omega)$ is smooth and vanishes in neighborhoods of $r_{ \pm}$; and ε is small.

- With the same strategy we obtain asymptotic for backward solutions of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0
\end{array}\right.
$$

Extensions to non-symmetric backgrounds

- The simplest class consists of metric of the form

$$
g=g_{0}+\varepsilon \eta,
$$

where g_{0} is the SdS metric; $\eta=\eta(r, \omega, d r, d \omega)$ is smooth and vanishes in neighborhoods of $r_{ \pm}$; and ε is small.

- With the same strategy we obtain asymptotic for backward solutions of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0
\end{array}\right.
$$

- It is more technical because the WKB phases and amplitudes are no longer explicit; and because the angular propagation kicks in.

Asymptotic of scalar fields

Theorem [work in progress]
Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0 .
\end{array}\right.
$$

Asymptotic of scalar fields

Theorem [work in progress]

Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0
\end{array}\right.
$$

There exist u_{-}, u_{+}smooth and exponentially decaying with

$$
\begin{aligned}
u(0, x, \omega)= & a(0, x, \omega) \cdot u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-} T}}\right), \psi(0, x, \omega)\right) \\
& +u_{+}(T-x, \omega)+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right)
\end{aligned}
$$

where:

Asymptotic of scalar fields

Theorem [work in progress]

Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0
\end{array}\right.
$$

There exist u_{-}, u_{+}smooth and exponentially decaying with

$$
\begin{aligned}
u(0, x, \omega)= & a(0, x, \omega) \cdot u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-} T}}\right), \psi(0, x, \omega)\right) \\
& +u_{+}(T-x, \omega)+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right)
\end{aligned}
$$

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi)=0$;

Asymptotic of scalar fields

Theorem [work in progress]

Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0
\end{array}\right.
$$

There exist u_{-}, u_{+}smooth and exponentially decaying with

$$
\begin{aligned}
u(0, x, \omega)= & a(0, x, \omega) \cdot u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-} T}}\right), \psi(0, x, \omega)\right) \\
& +u_{+}(T-x, \omega)+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right)
\end{aligned}
$$

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi)=0$;
- $\psi: \mathbb{R}^{2} \times S^{2} \rightarrow S^{2}$ solves the linearized eikonal equation $g(\nabla \phi, \nabla \psi)=0$;

Asymptotic of scalar fields

Theorem [work in progress]

Consider u_{0}, u_{1} smooth with compact support, and u solution of

$$
\left\{\begin{array}{c}
\left(\square_{g}+m^{2}\right) u=0 \\
\left(u, \partial_{t} u\right)(T)=\left(u_{0}, u_{1}\right),\left.\quad u\right|_{\mathcal{B}}=0 .
\end{array}\right.
$$

There exist u_{-}, u_{+}smooth and exponentially decaying with

$$
\begin{aligned}
u(0, x, \omega)= & a(0, x, \omega) \cdot u_{-}\left(\frac{1}{\kappa_{-}} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-} T}}\right), \psi(0, x, \omega)\right) \\
& +u_{+}(T-x, \omega)+O_{H^{1 / 2}}\left(e^{-c_{0} T}\right)
\end{aligned}
$$

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi)=0$;
- $\psi: \mathbb{R}^{2} \times S^{2} \rightarrow S^{2}$ solves the linearized eikonal equation $g(\nabla \phi, \nabla \psi)=0$;
- a solves the transport equation $g(\nabla a, \nabla \phi)+\square \phi=0$.

Remaining work and continuation

- Perform the second step in this setting: derive Hawking's result from the previous theorem.

Remaining work and continuation

- Perform the second step in this setting: derive Hawking's result from the previous theorem.
- Generalize these ideas to Kerr-de Sitter (and beyond!)

Remaining work and continuation

- Perform the second step in this setting: derive Hawking's result from the previous theorem.
- Generalize these ideas to Kerr-de Sitter (and beyond!)

Thank you!

