A quantitative description of Hawking radiation.

Drouot Alexis

Les Houches, May 22nd 2018

• Particles are represented by wave functions ψ .

- Particles are represented by wave functions ψ .
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Particles are represented by wave functions ψ .
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator U(t,0), i.e.

$$\psi_t = U(t,0)\psi_0$$

then the state dynamics must satisfy

$$\mathbb{E}_t(\psi_t) = \mathbb{E}_0(\psi_0) \iff \mathbb{E}_t(U(t,0)\psi_0) = \mathbb{E}_0(\psi_0)$$
$$\iff \mathbb{E}_t(\psi_t) = \mathbb{E}_0(U(0,t)\psi_t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Particles are represented by wave functions ψ .
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator U(t, 0), i.e.

$$\psi_t = U(t,0)\psi_0$$

then the state dynamics must satisfy

$$\mathbb{E}_t(\psi_t) = \mathbb{E}_0(\psi_0) \iff \mathbb{E}_t(U(t,0)\psi_0) = \mathbb{E}_0(\psi_0)$$
$$\iff \mathbb{E}_t(\psi_t) = \mathbb{E}_0(U(0,t)\psi_t).$$

If you want to study the dynamics of quantum fields, you must study the backward propagation given by U(0, t).

- Particles are represented by wave functions ψ .
- Quantum fields are wave function functionals: $\mathbb{E}: \psi \mapsto \mathbb{E}(\psi)$.
- If the particle dynamics is given by a propagator U(t,0), i.e.

$$\psi_t = U(t,0)\psi_0$$

then the state dynamics must satisfy

$$\mathbb{E}_t(\psi_t) = \mathbb{E}_0(\psi_0) \iff \mathbb{E}_t(U(t,0)\psi_0) = \mathbb{E}_0(\psi_0)$$
$$\iff \mathbb{E}_t(\psi_t) = \mathbb{E}_0(U(0,t)\psi_t).$$

- If you want to study the dynamics of quantum fields, you must study the backward propagation given by U(0, t).
- This reduces the analysis of quantum fields to (a) a PDE problem and (b) a (possibly difficult) computation.

It describes spherically symmetric black holes with positive cosmological constant.

- It describes spherically symmetric black holes with positive cosmological constant.
- ▶ It is the manifold $\mathbb{R} \times (r_-, r_+) \times S^2$, with Lorentzian metric

$$g = \frac{\Delta_r}{r^2} dt^2 - \frac{r^2}{\Delta_r} dr^2 - r^2 d\sigma_{S^2}(\omega)$$
$$\Delta_r = r^2 \left(1 - \frac{\Lambda r^2}{3}\right) - 2M_0 r, \quad \Lambda, M > 0$$
$$\Delta_r(r_{\pm}) = 0, \quad \Delta_r > 0 \text{ on } (r_-, r_+).$$

- It describes spherically symmetric black holes with positive cosmological constant.
- ▶ It is the manifold $\mathbb{R} \times (r_-, r_+) \times S^2$, with Lorentzian metric

$$g = \frac{\Delta_r}{r^2} dt^2 - \frac{r^2}{\Delta_r} dr^2 - r^2 d\sigma_{S^2}(\omega)$$

$$\Delta_r = r^2 \left(1 - \frac{\Lambda r^2}{3}\right) - 2M_0 r, \quad \Lambda, M > 0$$

$$\Delta_r(r_{\pm}) = 0, \quad \Delta_r > 0 \text{ on } (r_-, r_+).$$

This metric can be extended beyond the horizons r = r₊ and r = r₋.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- It describes spherically symmetric black holes with positive cosmological constant.
- ▶ It is the manifold $\mathbb{R} \times (r_-, r_+) \times S^2$, with Lorentzian metric

$$g = \frac{\Delta_r}{r^2} dt^2 - \frac{r^2}{\Delta_r} dr^2 - r^2 d\sigma_{S^2}(\omega)$$

$$\Delta_r = r^2 \left(1 - \frac{\Lambda r^2}{3}\right) - 2M_0 r, \quad \Lambda, M > 0$$

$$\Delta_r(r_{\pm}) = 0, \quad \Delta_r > 0 \text{ on } (r_-, r_+).$$

- This metric can be extended beyond the horizons r = r₊ and r = r₋.
- The surface gravities of the black hole and cosmological horizons are characteristic parameters given by:

$$\kappa_{\pm}=\frac{|\Delta_r'(r_{\pm})|}{2r_{\pm}^2}.$$

• We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta_r} \Rightarrow g = \frac{\Delta_r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta_r} \Rightarrow g = \frac{\Delta_r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t) = -t - Ae^{-2\kappa_- t} + O(e^{-4\kappa_- t})$.

• We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta_r} \Rightarrow g = \frac{\Delta_r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t) = -t Ae^{-2\kappa_- t} + O(e^{-4\kappa_- t})$.
- A collapsing star is a timelike submanifold

$$\mathcal{B} = \{(t, x, \omega) : x = z(t)\}$$

where $z(t) = -t - Ae^{-2\kappa_{-}t} + O(e^{-4\kappa_{-}t})$ is a smooth decreasing function.

• We set another system of coordinates S_* by (t, x, ω) with

$$\frac{dx}{dr} = \frac{r^2}{\Delta_r} \Rightarrow g = \frac{\Delta_r}{r^2} (dt^2 - dx^2) - r^2 d\sigma_{S^2}(\omega)$$

Radial geodesics propagate along $t \pm x = \text{cte}$ and r_+, r_- get send to $+\infty$ and $-\infty$, respectively.

- Massive particles in radial free-fall to the black hole follow curves $(t, x(t), \omega)$ with $x(t) = -t Ae^{-2\kappa_- t} + O(e^{-4\kappa_- t})$.
- A collapsing star is a timelike submanifold

$$\mathcal{B} = \{(t, x, \omega) : x = z(t)\}$$

where $z(t) = -t - Ae^{-2\kappa_{-}t} + O(e^{-4\kappa_{-}t})$ is a smooth decreasing function.

We want to study quantum fields in this space. We need an evolution equation for particles.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$(\Box_g + m^2)u = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$(\Box_g + m^2)u = 0.$$

 We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time T → +∞:
(□_g + m²)u = 0

$$\begin{cases} (\Box_g + m^2)u = 0\\ u|_{\mathcal{B}} = 0\\ (u, \partial_t u)(T) = (u_0, u_1). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is the mathematical basis for Hawking radiation.

We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$(\Box_g + m^2)u = 0.$$

We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time T → +∞:

$$\begin{cases} (\Box_g + m^2)u = 0\\ u|_{\mathcal{B}} = 0\\ (u, \partial_t u)(T) = (u_0, u_1). \end{cases}$$

This is the mathematical basis for Hawking radiation.

▶ We will need to (a) study asymptotic of u(t = 0) when $T \to +\infty$ and (b) compute a certain functional $\mathbb{E}(u(t = 0))$ where \mathbb{E} is the vacuum quantum state.

We consider spin-0 particles with mass m in the Schwarzschild-de Sitter spacetime. The equation is given by

$$(\Box_g + m^2)u = 0.$$

We put reflecting boundary conditions on the collapsing star. We study the backward propagation starting at time T → +∞:

$$\begin{cases} (\Box_g + m^2)u = 0\\ u|_{\mathcal{B}} = 0\\ (u, \partial_t u)(T) = (u_0, u_1). \end{cases}$$

This is the mathematical basis for Hawking radiation.

- We will need to (a) study asymptotic of u(t = 0) when $T \to +\infty$ and (b) compute a certain functional $\mathbb{E}(u(t = 0))$ where \mathbb{E} is the vacuum quantum state.
- We will focus only on (a) in this talk.

Asymptotic of scalar fields

Theorem [D '17]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1)\\ u|_{\mathcal{B}} = 0. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Asymptotic of scalar fields

Theorem [D '17]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1)\\ u|_{\mathcal{B}} = 0. \end{cases}$$

There exist scattering fields (see later) u_- , u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0,

$$u(0, x, \omega) = \frac{r_{-}}{r} u_{-} \left(\frac{1}{\kappa_{-}} \ln \left(\frac{x}{e^{-\kappa_{-}T}} \right), \omega \right) + u_{+} (T - x, \omega) + O_{H^{1/2}} (e^{-c_{0}T}).$$

(κ_{-} is the surface gravity of the black-hole.)

Pictorial representation

Comments

• The black hole temperature $\kappa_-/(2\pi)$ emerges.

Comments

- The black hole temperature $\kappa_-/(2\pi)$ emerges.
- ► The fields u₋ and u₊ are Freidlander's radiation fields; they do not depend on B.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Comments

- The black hole temperature $\kappa_-/(2\pi)$ emerges.
- ► The fields u₋ and u₊ are Freidlander's radiation fields; they do not depend on B.
- Thus the result gives exponential convergence to equilibrium. The rate c₀ can be computed explicitly: it depends only on κ₋, κ₊ and the first resonance of the K–G equation on the black-hole background.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► Let $\mathbb{E}^{\mathbb{H},\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathbb{H} .

- ► Let $\mathbb{E}^{\mathbb{H},\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathbb{H} .
- ▶ Let \mathbb{H}_0 be the black-hole Klein–Gordon Hamiltonian in S_* : the K–G equation takes the form $(\partial_t^2 - \mathbb{H}_0)u = 0$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ► Let $\mathbb{E}^{\mathbb{H},\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathbb{H} .
- Let ℍ₀ be the black-hole Klein–Gordon Hamiltonian in S_{*}: the K–G equation takes the form (∂²_t − ℍ₀)u = 0.
- Thanks to the theorem:

$$\mathbb{E}^{\mathbb{H}_0,2\pi/\kappa_+}(U(0,T)(u_0,u_1))$$

$$=\mathbb{E}^{D_x^2,2\pi/\kappa_+}(u_+,D_xu_+)\cdot\mathbb{E}^{D_x^2,2\pi/\kappa_-}(u_-,D_xu_-)\cdot\left(1+O\left(e^{-c_0T}\right)\right).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Let ℝ^{H,β} the Bose–Einstein state at temperature 1/β with respect to a Hamiltonian H.
- Let ℍ₀ be the black-hole Klein–Gordon Hamiltonian in S_{*}: the K–G equation takes the form (∂²_t − ℍ₀)u = 0.
- Thanks to the theorem:

$$\mathbb{E}^{\mathbb{H}_0,2\pi/\kappa_+}(U(0,T)(u_0,u_1))$$

$$=\mathbb{E}^{D_x^2,2\pi/\kappa_+}(u_+,D_xu_+)\cdot\mathbb{E}^{D_x^2,2\pi/\kappa_-}(u_-,D_xu_-)\cdot\left(1+O\left(e^{-c_0T}\right)\right).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature κ₊/(2π).

- ► Let $\mathbb{E}^{\mathbb{H},\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathbb{H} .
- Let ℍ₀ be the black-hole Klein–Gordon Hamiltonian in S_{*}: the K–G equation takes the form (∂²_t − ℍ₀)u = 0.
- Thanks to the theorem:

$$\mathbb{E}^{\mathbb{H}_0, 2\pi/\kappa_+}(U(0, T)(u_0, u_1))$$

$$=\mathbb{E}^{D_x^2,2\pi/\kappa_+}(u_+,D_xu_+)\cdot\mathbb{E}^{D_x^2,2\pi/\kappa_-}(u_-,D_xu_-)\cdot\left(1+O\left(e^{-c_0T}\right)\right).$$

- Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature κ₊/(2π).
- As time goes, this state splits to two Bose–Einstein states with respect to the asymptotic Hamiltonians D²_x.

- ► Let $\mathbb{E}^{\mathbb{H},\beta}$ the Bose–Einstein state at temperature $1/\beta$ with respect to a Hamiltonian \mathbb{H} .
- Let ℍ₀ be the black-hole Klein–Gordon Hamiltonian in S_{*}: the K–G equation takes the form (∂²_t − ℍ₀)u = 0.
- Thanks to the theorem:

$$\mathbb{E}^{\mathbb{H}_0, 2\pi/\kappa_+}(U(0, T)(u_0, u_1))$$

$$=\mathbb{E}^{D_x^2,2\pi/\kappa_+}(u_+,D_xu_+)\cdot\mathbb{E}^{D_x^2,2\pi/\kappa_-}(u_-,D_xu_-)\cdot\left(1+O\left(e^{-c_0T}\right)\right).$$

- Interpretation: at time 0, the quantum state is that of a Bose–Einstein gas with cosmological background temperature κ₊/(2π).
- As time goes, this state splits to two Bose–Einstein states with respect to the asymptotic Hamiltonians D²_x.
- The first one sees no change in temperature while the second one acquires the black-hole temperature κ₋/(2π).

Bachelot late '90s, Melnyk early '00s – emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Bachelot late '90s, Melnyk early '00s emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
- Häfner '09 emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Bachelot late '90s, Melnyk early '00s emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
- Häfner '09 emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier–Gérard '13 Hawking effect for interacting fermions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Bachelot late '90s, Melnyk early '00s emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
- Häfner '09 emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier–Gérard '13 Hawking effect for interacting fermions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This work provides the first rates of convergence. The previous proofs were not fully constructive.

- Bachelot late '90s, Melnyk early '00s emission of bosons and of fermions by Schwarzschild black holes and Schwarzschild–de Sitter black holes.
- Häfner '09 emission of fermions by Kerr black-holes. First (and only) non-spherically symmetric setting.
- Bouvier–Gérard '13 Hawking effect for interacting fermions
- This work provides the first rates of convergence. The previous proofs were not fully constructive.
- We take full advantage of recent decay results for waves in black hole spacetimes. For the dS black-holes, see Bachelot-Motet-Bachelot '93, Sa-Barreto-Zworski '97 (resonances), Bony-Häfner '07 (exponential decay), Dafermos-Rodnianski '07 (polynomial decay), Melrose-Sa-Barreto-Vasy '08, Vasy '13 (geometric methods), Dyatlov '11 -- '12 (rotating black holes), Hintz-Vasy '14--(non-linear results),...

New system of coordinates

It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by Ŝ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
New system of coordinates

It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by Ŝ.

Set

$$\hat{t}=t-{\sf F}(r),\,\,{\sf F}(r)\sim -rac{1}{2\kappa_{\pm}}\ln|r-r_{\pm}|$$
 for r near $r_{\pm}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In (\hat{t}, r, ω) the metric is smooth across $r = r_{\pm}$.

New system of coordinates

It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by Ŝ.

Set

$$\hat{t}=t-{\sf F}(r),\,\,{\sf F}(r)\sim -rac{1}{2\kappa_\pm}\ln|r-r_\pm|$$
 for r near $r_\pm.$

In (\hat{t}, r, ω) the metric is smooth across $r = r_{\pm}$.

We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.

New system of coordinates

It is more convenient to study the propagation in a different system of coordinates that somehow "follows" the collapse, denoted by Ŝ.

Set

$$\hat{t}=t-{\sf F}(r),\,\,{\sf F}(r)\sim -rac{1}{2\kappa_\pm}\ln|r-r_\pm|$$
 for r near $r_\pm.$

In (\hat{t}, r, ω) the metric is smooth across $r = r_{\pm}$.

- We are studying the backward propagation. Nothing can cross the horizons. Hence the propagation takes place in compact smooth slices.
- After possibly rescaling, in \hat{S} the collapsing star is given by

$$\mathcal{B} = \{(t, z(\hat{t}), \omega)\}, \ \ z(\hat{t}) = r_{-} - \alpha(\hat{t} - 1) + O(\hat{t} - 1)^{2}.$$

(ロ)、

Due to the blueshift the wave gets localized on a region of size

 $\Delta r
ightarrow 0$ as $T
ightarrow \infty$.

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

Due to the blueshift the wave gets localized on a region of size

 $\Delta r
ightarrow 0$ as $T
ightarrow \infty$.

in \hat{S} . The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► The boundary affects the behavior of the wave only for t̂ ∈ [0, 1] i.e. only for fixed time.

Due to the blueshift the wave gets localized on a region of size

 $\Delta r
ightarrow 0$ as $T
ightarrow \infty$.

in $\hat{\mathcal{S}}$. The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in [0, 1]$ i.e. only for fixed time.
- ▶ A standard wave WKB parametrix for $\hat{t} \in [0, 1]$ allows to analyze the impact of the boundary.

Due to the blueshift the wave gets localized on a region of size

 $\Delta r
ightarrow 0$ as $T
ightarrow \infty$.

in \hat{S} . The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in [0, 1]$ i.e. only for fixed time.
- ▶ A standard wave WKB parametrix for $\hat{t} \in [0, 1]$ allows to analyze the impact of the boundary.
- In S_{*} the boundary affects the propagation for t ∈ [0, T/2]. A harder high frequency analysis is required: it needs to work for for time intervals of size T/2 → ∞.

Due to the blueshift the wave gets localized on a region of size

 $\Delta r
ightarrow 0$ as $T
ightarrow \infty$.

in \hat{S} . The typical frequency of the wave blows up: $\Delta \xi \to \infty$.

- The boundary affects the behavior of the wave only for $\hat{t} \in [0, 1]$ i.e. only for fixed time.
- ▶ A standard wave WKB parametrix for $\hat{t} \in [0, 1]$ allows to analyze the impact of the boundary.
- In S_{*} the boundary affects the propagation for t ∈ [0, T/2]. A harder high frequency analysis is required: it needs to work for for time intervals of size T/2 → ∞.
- Now we study two separate problems: propagation for t ∈ [1, T] (before reflection) and propagation for t ∈ [0, 1] (after reflection).

• Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.
- ► The equation is invariant under time-reversion t → -t. It suffices to understand forwards scattering, then reverse time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.
- ► The equation is invariant under time-reversion t → -t. It suffices to understand forwards scattering, then reverse time.

► Under time reversion, the surface t̂ = -∞ becomes {r = r_} ∪ {r = r_}.

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.
- ► The equation is invariant under time-reversion t → -t. It suffices to understand forwards scattering, then reverse time.
- ► Under time reversion, the surface î = -∞ becomes {r = r_} ∪ {r = r_}.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.
- ► The equation is invariant under time-reversion t → -t. It suffices to understand forwards scattering, then reverse time.
- ► Under time reversion, the surface t̂ = -∞ becomes {r = r_} ∪ {r = r_}.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.
- This constructs u₊ and u₋. Melrose–Sá-Barreto–Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.

- Goal: understand the behavior as $\hat{t} \to -\infty$ to solutions of $(\Box + m^2)u = 0$.
- ► The equation is invariant under time-reversion t → -t. It suffices to understand forwards scattering, then reverse time.
- Under time reversion, the surface î = −∞ becomes {r = r_} ∪ {r = r_}.
- Therefore: scattering fields are obtained by tracing forwards solutions along the horizons, then reversing time.
- This constructs u₊ and u₋. Melrose–Sá-Barreto–Vasy '08 (later extended by Dyatlov '12 and Vasy '13) shows that they decay exponentially.
- This strategy is due to Friedlander '80s (in the more complicated Euclidean scattering). For related perspectives in MGR, see Gérard–Georgescu–Häfner '14-'17, Nicolas '17, Dafermos–Rodnianski–Shlapentokh-Rothman '17.

Theorem

Let u be a solution written in \hat{S} of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0^\infty \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution).

Theorem

Let u be a solution written in \hat{S} of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0^{\infty} \end{cases}$$

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution). Set v_{\pm} be the traces of \tilde{u} on the horizons r_{\pm} :

$$v_{\pm}(x,\omega) = \tilde{u}(x,r_{\pm},\omega).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then for some $\nu > 0$,

Theorem

Let u be a solution written in \hat{S} of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0^{\infty} \end{cases}$$

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution). Set v_{\pm} be the traces of \tilde{u} on the horizons r_{\pm} :

$$v_{\pm}(x,\omega) = \tilde{u}(x,r_{\pm},\omega).$$

Then for some $\nu > 0$,

▶
$$v_{\pm}(x,\omega) = 0$$
 for $x \le 0$ and $v_{\pm}(x,\omega) = O(e^{-\nu x})$ for large x .

Theorem

Let u be a solution written in \hat{S} of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(\hat{t} = T) = (u_0, u_1) \in C_0^{\infty} \end{cases}$$

Let $\tilde{u}(\hat{t}, r, \omega) = u(-\hat{t} - 2F(r) + T, r, \omega)$ (the time-reversed solution). Set v_{\pm} be the traces of \tilde{u} on the horizons r_{\pm} :

$$v_{\pm}(x,\omega) = \tilde{u}(x,r_{\pm},\omega).$$

Then for some $\nu > 0$,

Semiclassical description of the blueshift effect

Near the black holes, asymptotically backwards waves look like

 $u_{-}(T-2F(r),\omega)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $u_{-}(x,\omega) = 0$ for $x \le 0$ and decays exponentially for $x \ge 0$.

Semiclassical description of the blueshift effect

Near the black holes, asymptotically backwards waves look like

$$u_{-}(T-2F(r),\omega)$$

where $u_{-}(x,\omega) = 0$ for $x \le 0$ and decays exponentially for $x \ge 0$. Using $F(r) \sim -(2\kappa_{-})^{-1} \ln(r-r_{-})$ near $r = r_{-}$, $u_{-}(T-2F(r),\omega) \sim u_{-}\left(T + \frac{1}{\kappa_{-}}\ln(r-r_{-}),\omega\right)$ $= u_{-}\left(\ln\left(\frac{r-r_{-}}{h}\right),\omega\right)$.

Above $h = e^{-\kappa_- T} \rightarrow 0$ is a small parameter.

Semiclassical description of the blueshift effect

Near the black holes, asymptotically backwards waves look like

$$u_{-}(T-2F(r),\omega)$$

where $u_{-}(x,\omega) = 0$ for $x \le 0$ and decays exponentially for $x \ge 0$.

• Using
$$F(r) \sim -(2\kappa_{-})^{-1} \ln(r - r_{-})$$
 near $r = r_{-}$,

$$u_{-}(T - 2F(r), \omega) \sim u_{-}\left(T + \frac{1}{\kappa_{-}}\ln(r - r_{-}), \omega\right)$$

= $u_{-}\left(\ln\left(\frac{r - r_{-}}{h}\right), \omega\right).$

Above $h = e^{-\kappa_- T} \rightarrow 0$ is a small parameter.

The semiclassical wavefront set of the *h*-dependent distribution

$$u_{-}\left(\ln\left(\frac{r-r_{-}}{h}\right),\omega\right)$$

satisfies WF_h \subset {($r_-, \omega, \xi, 0$)}. This gives a semiclassical description of the blueshift effect.

Study of the reflection

Study of the reflection

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

No diffraction.

No diffraction.

Essentially one reflection that occurs at $r = r_{-}, \hat{t} = 1$.

- No diffraction.
- Essentially one reflection that occurs at $r = r_{-}, \hat{t} = 1$.
- As a consequence we can study the boundary problem near $r = r_{-}, \hat{t} = 1$. There the K–G operator is well approximated by a constant coefficients operator with symbol

$$\sigma(\Box_g)(1, r_-, 0; \tau, \xi, 0).$$

The angular part does not matter because the reflecting data is only supported near radial frequencies.

No diffraction.

- Essentially one reflection that occurs at $r = r_{-}, \hat{t} = 1$.
- As a consequence we can study the boundary problem near r = r_, t̂ = 1. There the K–G operator is well approximated by a constant coefficients operator with symbol

$$\sigma(\Box_g)(1, r_-, 0; \tau, \xi, 0).$$

The angular part does not matter because the reflecting data is only supported near radial frequencies.

► This gives a good enough approximation of u after reflection for times in [1 − ch, 1] for any fixed c > 0. Zoom in a box of size O(h) near $r = r_{-}$ and $\hat{t} = 1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▶ We must show that the wave reflects essentially only once.

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation (□ + m²)u_{WB} = 0 without boundary, for times in [0, 1 − ch], and initial data u(t̂ = 1 − ch).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation (□ + m²)u_{WB} = 0 without boundary, for times in [0, 1 − ch], and initial data u(t̂ = 1 − ch).
- As the initial data is localized in frequencies ~ h⁻¹, we can construct a WKB approximate solution for (□ + m²)u_{WB} = 0.

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation (□ + m²)u_{WB} = 0 without boundary, for times in [0, 1 − ch], and initial data u(t̂ = 1 − ch).
- As the initial data is localized in frequencies ~ h⁻¹, we can construct a WKB approximate solution for (□ + m²)u_{WB} = 0.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The trace of the approximate solution is O(h) on \mathcal{B} .

- We must show that the wave reflects essentially only once.
- For that we consider the KG equation (□ + m²)u_{WB} = 0 without boundary, for times in [0, 1 − ch], and initial data u(t̂ = 1 − ch).
- As the initial data is localized in frequencies ~ h⁻¹, we can construct a WKB approximate solution for (□ + m²)u_{WB} = 0.
- The trace of the approximate solution is O(h) on \mathcal{B} .
- By Hörmander's hyperbolic energy estimates, u (the solution with boundary) is well approximated by this explicit WKB parametrix for t ∈ [0, 1 − ch], with error of order O(h) = O(e^{-κ_−T}).

▶ Going back to S_{*}, we get the theorem:
 Theorem [D '17]
 If u solves

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1) \in C_0^{\infty}, \quad u|_{\mathcal{B}} = 0 \end{cases}$$

then there exist u_- , u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0, in S_*

$$u(0,x,\omega) = \frac{r_{-}}{r}u_{-}\left(\frac{1}{\kappa_{-}}\ln\left(\frac{x}{e^{-\kappa_{-}T}}\right),\omega\right) WKB \text{ part from BH} + u_{+}(T-x,\omega) \text{ scattering part to } CH + O_{H^{1/2}}(e^{-c_{0}T}).$$

うしん 同一人用 人用 人口 マ
Global study of the reflection

▶ Going back to S_{*}, we get the theorem:
Theorem [D '17]
If µ solves

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1) \in C_0^{\infty}, \quad u|_{\mathcal{B}} = 0 \end{cases}$$

then there exist u_- , u_+ smooth and exponentially decaying; and $c_0 > 0$ such that for t near 0, in S_*

$$u(0, x, \omega) = \frac{r_{-}}{r} u_{-} \left(\frac{1}{\kappa_{-}} \ln \left(\frac{x}{e^{-\kappa_{-}T}} \right), \omega \right) \text{ WKB part from BH} + u_{+}(T - x, \omega) \text{ scattering part to } CH + O_{H^{1/2}}(e^{-c_{0}T}).$$

This describes the PDE part of the problem. A delicate calculation remains to derive Hawking's radiation from here.

Extensions to non-symmetric backgrounds

The simplest class consists of metric of the form

$$g=g_0+\varepsilon\eta,$$

where g_0 is the SdS metric; $\eta = \eta(r, \omega, dr, d\omega)$ is smooth and vanishes in neighborhoods of r_{\pm} ; and ε is small.

Extensions to non-symmetric backgrounds

The simplest class consists of metric of the form

$$g=g_0+\varepsilon\eta,$$

where g_0 is the SdS metric; $\eta = \eta(r, \omega, dr, d\omega)$ is smooth and vanishes in neighborhoods of r_{\pm} ; and ε is small.

With the same strategy we obtain asymptotic for backward solutions of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

Extensions to non-symmetric backgrounds

The simplest class consists of metric of the form

$$g=g_0+\varepsilon\eta,$$

where g_0 is the SdS metric; $\eta = \eta(r, \omega, dr, d\omega)$ is smooth and vanishes in neighborhoods of r_{\pm} ; and ε is small.

With the same strategy we obtain asymptotic for backward solutions of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

It is more technical because the WKB phases and amplitudes are no longer explicit; and because the angular propagation kicks in.

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

There exist u_{-} , u_{+} smooth and exponentially decaying with

$$u(0, x, \omega) = a(0, x, \omega) \cdot u_{-} \left(\frac{1}{\kappa_{-}} \ln\left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-}T}}\right), \psi(0, x, \omega)\right)$$
$$+ u_{+}(T - x, \omega) + O_{H^{1/2}}(e^{-c_{0}T})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where:

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

There exist u_{-} , u_{+} smooth and exponentially decaying with

$$u(0, x, \omega) = a(0, x, \omega) \cdot u_{-} \left(\frac{1}{\kappa_{-}} \ln\left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-}T}}\right), \psi(0, x, \omega)\right)$$
$$+ u_{+}(T - x, \omega) + O_{H^{1/2}}(e^{-c_{0}T})$$

where:

• ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi) = 0$;

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

There exist u_{-} , u_{+} smooth and exponentially decaying with

$$u(0, x, \omega) = a(0, x, \omega) \cdot u_{-} \left(\frac{1}{\kappa_{-}} \ln \left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-}T}} \right), \psi(0, x, \omega) \right)$$
$$+ u_{+}(T - x, \omega) + O_{H^{1/2}}(e^{-c_{0}T})$$

where:

φ solves the eikonal equation g(∇φ, ∇φ) = 0;
ψ : ℝ² × S² → S² solves the linearized eikonal equation g(∇φ, ∇ψ) = 0;

Theorem [work in progress]

Consider u_0, u_1 smooth with compact support, and u solution of

$$\begin{cases} (\Box_g + m^2)u = 0\\ (u, \partial_t u)(T) = (u_0, u_1), \quad u|_{\mathcal{B}} = 0. \end{cases}$$

There exist u_{-} , u_{+} smooth and exponentially decaying with

$$u(0, x, \omega) = a(0, x, \omega) \cdot u_{-} \left(\frac{1}{\kappa_{-}} \ln\left(\frac{\phi(0, x, \omega)}{e^{-\kappa_{-}T}}\right), \psi(0, x, \omega)\right)$$
$$+ u_{+}(T - x, \omega) + O_{H^{1/2}}(e^{-c_{0}T})$$

where:

- ϕ solves the eikonal equation $g(\nabla \phi, \nabla \phi) = 0$;
- ψ : ℝ² × S² → S² solves the linearized eikonal equation g(∇φ, ∇ψ) = 0;

► a solves the transport equation $g(\nabla a, \nabla \phi) + \Box \phi = 0$.

Remaining work and continuation

Perform the second step in this setting: derive Hawking's result from the previous theorem.

Remaining work and continuation

Perform the second step in this setting: derive Hawking's result from the previous theorem.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Generalize these ideas to Kerr-de Sitter (and beyond!)

Remaining work and continuation

- Perform the second step in this setting: derive Hawking's result from the previous theorem.
- Generalize these ideas to Kerr-de Sitter (and beyond!)

Thank you!