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Quantum field theory

I Particles are represented by wave functions ψ.

I Quantum fields are wave function functionals: E : ψ 7→ E(ψ).

I If the particle dynamics is given by a propagator U(t, 0), i.e.

ψt = U(t, 0)ψ0

then the state dynamics must satisfy

Et(ψt) = E0(ψ0) ⇔ Et(U(t, 0)ψ0) = E0(ψ0)

⇔ Et(ψt) = E0(U(0, t)ψt).

I If you want to study the dynamics of quantum fields, you
must study the backward propagation given by U(0, t).

I This reduces the analysis of quantum fields to (a) a PDE
problem and (b) a (possibly difficult) computation.
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The Schwarzschild–de Sitter space

I It describes spherically symmetric black holes with positive
cosmological constant.

I It is the manifold R× (r−, r+)× S2, with Lorentzian metric

g =
∆r

r2
dt2 − r2

∆r
dr2 − r2dσS2(ω)

∆r = r2
(

1− Λr2

3

)
− 2M0r , Λ,M > 0

∆r (r±) = 0, ∆r > 0 on (r−, r+).

I This metric can be extended beyond the horizons r = r+ and
r = r−.

I The surface gravities of the black hole and cosmological
horizons are characteristic parameters given by:

κ± =
|∆′r (r±)|

2r2±
.



The Schwarzschild–de Sitter space

I It describes spherically symmetric black holes with positive
cosmological constant.

I It is the manifold R× (r−, r+)× S2, with Lorentzian metric

g =
∆r

r2
dt2 − r2

∆r
dr2 − r2dσS2(ω)

∆r = r2
(

1− Λr2

3

)
− 2M0r , Λ,M > 0

∆r (r±) = 0, ∆r > 0 on (r−, r+).

I This metric can be extended beyond the horizons r = r+ and
r = r−.

I The surface gravities of the black hole and cosmological
horizons are characteristic parameters given by:

κ± =
|∆′r (r±)|

2r2±
.



The Schwarzschild–de Sitter space

I It describes spherically symmetric black holes with positive
cosmological constant.

I It is the manifold R× (r−, r+)× S2, with Lorentzian metric

g =
∆r

r2
dt2 − r2

∆r
dr2 − r2dσS2(ω)

∆r = r2
(

1− Λr2

3

)
− 2M0r , Λ,M > 0

∆r (r±) = 0, ∆r > 0 on (r−, r+).

I This metric can be extended beyond the horizons r = r+ and
r = r−.

I The surface gravities of the black hole and cosmological
horizons are characteristic parameters given by:

κ± =
|∆′r (r±)|

2r2±
.



The Schwarzschild–de Sitter space

I It describes spherically symmetric black holes with positive
cosmological constant.

I It is the manifold R× (r−, r+)× S2, with Lorentzian metric

g =
∆r

r2
dt2 − r2

∆r
dr2 − r2dσS2(ω)

∆r = r2
(

1− Λr2

3

)
− 2M0r , Λ,M > 0

∆r (r±) = 0, ∆r > 0 on (r−, r+).

I This metric can be extended beyond the horizons r = r+ and
r = r−.

I The surface gravities of the black hole and cosmological
horizons are characteristic parameters given by:

κ± =
|∆′r (r±)|

2r2±
.



Collapsing star in SdS

I We set another system of coordinates S∗ by (t, x , ω) with

dx

dr
=

r2

∆r
⇒ g =

∆r

r2
(dt2 − dx2)− r2dσS2(ω)

Radial geodesics propagate along t ± x = cte and r+, r− get
send to +∞ and −∞, respectively.

I Massive particles in radial free-fall to the black hole follow
curves (t, x(t), ω) with x(t) = −t − Ae−2κ−t + O(e−4κ−t).

I A collapsing star is a timelike submanifold

B = {(t, x , ω) : x = z(t)}

where z(t) = −t − Ae−2κ−t + O(e−4κ−t) is a smooth
decreasing function.

I We want to study quantum fields in this space. We need an
evolution equation for particles.
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The evolution equation

I We consider spin-0 particles with mass m in the
Schwarzschild–de Sitter spacetime. The equation is given by

(�g + m2)u = 0.

I We put reflecting boundary conditions on the collapsing star.
We study the backward propagation starting at time
T → +∞: 

(�g + m2)u = 0
u|B = 0

(u, ∂tu)(T ) = (u0, u1).

This is the mathematical basis for Hawking radiation.

I We will need to (a) study asymptotic of u(t = 0) when
T → +∞ and (b) compute a certain functional E(u(t = 0))
where E is the vacuum quantum state.

I We will focus only on (a) in this talk.
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Asymptotic of scalar fields

Theorem [D ’17]

Consider u0, u1 smooth with compact support, and u solution of
(�g + m2)u = 0

(u, ∂tu)(T ) = (u0, u1)
u|B = 0.

There exist scattering fields (see later) u−, u+ smooth and
exponentially decaying; and c0 > 0 such that for t near 0,

u(0, x , ω) =
r−
r
u−

(
1

κ−
ln
( x

e−κ−T

)
, ω

)
+ u+(T − x , ω) + OH1/2(e−c0T ).

(κ− is the surface gravity of the black-hole.)
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Pictorial representation

x

t

B

t = T(u0, u1)

︷ ︸︸ ︷
r−
r
u−

(
1

κ−
ln
( x

e−κ−T

)) ︷ ︸︸ ︷
u+(T − x)



Comments

I The black hole temperature κ−/(2π) emerges.

I The fields u− and u+ are Freidlander’s radiation fields; they
do not depend on B.

I Thus the result gives exponential convergence to equilibrium.
The rate c0 can be computed explicitly: it depends only on
κ−, κ+ and the first resonance of the K–G equation on the
black-hole background.
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The Hawking effect
I Let EH,β the Bose–Einstein state at temperature 1/β with

respect to a Hamiltonian H.

I Let H0 be the black-hole Klein–Gordon Hamiltonian in S∗:
the K–G equation takes the form (∂2t −H0)u = 0.

I Thanks to the theorem:

EH0,2π/κ+(U(0,T )(u0, u1))

= ED2
x ,2π/κ+(u+,Dxu+)·ED2

x ,2π/κ−(u−,Dxu−)·
(

1 + O
(
e−c0T

))
.

I Interpretation: at time 0, the quantum state is that of a
Bose–Einstein gas with cosmological background temperature
κ+/(2π).

I As time goes, this state splits to two Bose–Einstein states
with respect to the asymptotic Hamiltonians D2

x .

I The first one sees no change in temperature while the second
one acquires the black-hole temperature κ−/(2π).
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Previous related results

I Bachelot late ′90s, Melnyk early ′00s – emission of bosons and
of fermions by Schwarzschild black holes and
Schwarzschild–de Sitter black holes.

I Häfner ′09 – emission of fermions by Kerr black-holes. First
(and only) non-spherically symmetric setting.

I Bouvier–Gérard ′13 – Hawking effect for interacting fermions

I This work provides the first rates of convergence. The
previous proofs were not fully constructive.

I We take full advantage of recent decay results for waves in
black hole spacetimes. For the dS black-holes, see
Bachelot–Motet-Bachelot ′93, Sa-Barreto–Zworski ′97
(resonances), Bony–Häfner ′07 (exponential decay),
Dafermos–Rodnianski ′07 (polynomial decay),
Melrose–Sa-Barreto–Vasy ′08, Vasy ′13 (geometric methods),
Dyatlov ′11−′ 12 (rotating black holes), Hintz–Vasy ′14−
(non-linear results),...
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New system of coordinates

I It is more convenient to study the propagation in a different
system of coordinates that somehow ”follows” the collapse,
denoted by Ŝ.

I Set

t̂ = t − F (r), F (r) ∼ − 1

2κ±
ln |r − r±| for r near r±.

In (t̂, r , ω) the metric is smooth across r = r±.

I We are studying the backward propagation. Nothing can cross
the horizons. Hence the propagation takes place in compact
smooth slices.

I After possibly rescaling, in Ŝ the collapsing star is given by

B = {(t, z(t̂), ω)}, z(t̂) = r− − α(t̂ − 1) + O(t̂ − 1)2.



New system of coordinates

I It is more convenient to study the propagation in a different
system of coordinates that somehow ”follows” the collapse,
denoted by Ŝ.
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I We are studying the backward propagation. Nothing can cross
the horizons. Hence the propagation takes place in compact
smooth slices.

I After possibly rescaling, in Ŝ the collapsing star is given by

B = {(t, z(t̂), ω)}, z(t̂) = r− − α(t̂ − 1) + O(t̂ − 1)2.
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Why study propagation in Ŝ instead of S∗?

I Due to the blueshift the wave gets localized on a region of size

∆r → 0 as T →∞.

in Ŝ. The typical frequency of the wave blows up: ∆ξ →∞.

I The boundary affects the behavior of the wave only for
t̂ ∈ [0, 1] i.e. only for fixed time.

I A standard wave WKB parametrix for t̂ ∈ [0, 1] allows to
analyze the impact of the boundary.

I In S∗ the boundary affects the propagation for t ∈ [0,T/2]. A
harder high frequency analysis is required: it needs to work for
for time intervals of size T/2→∞.

I Now we study two separate problems: propagation for
t ∈ [1,T ] (before reflection) and propagation for t ∈ [0, 1]
(after reflection).
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Backward scattering fields

I Goal: understand the behavior as t̂ → −∞ to solutions of
(�+ m2)u = 0.

I The equation is invariant under time-reversion t 7→ −t. It
suffices to understand forwards scattering, then reverse time.

I Under time reversion, the surface t̂ = −∞ becomes
{r = r−} ∪ {r = r+}.

I Therefore: scattering fields are obtained by tracing forwards
solutions along the horizons, then reversing time.

I This constructs u+ and u−. Melrose–Sá-Barreto–Vasy ’08
(later extended by Dyatlov ’12 and Vasy ’13) shows that they
decay exponentially.

I This strategy is due to Friedlander ’80s (in the more
complicated Euclidean scattering). For related perspectives in
MGR, see Gérard–Georgescu–Häfner ’14-’17, Nicolas ’17,
Dafermos–Rodnianski–Shlapentokh-Rothman ’17.
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Dafermos–Rodnianski–Shlapentokh-Rothman ’17.



Backward scattering fields

I Goal: understand the behavior as t̂ → −∞ to solutions of
(�+ m2)u = 0.

I The equation is invariant under time-reversion t 7→ −t. It
suffices to understand forwards scattering, then reverse time.

I Under time reversion, the surface t̂ = −∞ becomes
{r = r−} ∪ {r = r+}.

I Therefore: scattering fields are obtained by tracing forwards
solutions along the horizons, then reversing time.

I This constructs u+ and u−. Melrose–Sá-Barreto–Vasy ’08
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Backward scattering fields

Theorem
Let u be a solution written in Ŝ of{

(�g + m2)u = 0
(u, ∂tu)(t̂ = T ) = (u0, u1) ∈ C∞0

Let ũ(t̂, r , ω) = u(−t̂ − 2F (r) + T , r , ω) (the time-reversed
solution).

Set v± be the traces of ũ on the horizons r±:

v±(x , ω) = ũ(x , r±, ω).

Then for some ν > 0,

I v±(x , ω) = 0 for x ≤ 0 and v±(x , ω) = O(e−νx) for large x .

I u(t̂, r , ω)− (v+ + v−)(T − t̂ − 2F (r), ω) = O(e−νT ) as
T → +∞.
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v±(x , ω) = ũ(x , r±, ω).

Then for some ν > 0,

I v±(x , ω) = 0 for x ≤ 0 and v±(x , ω) = O(e−νx) for large x .

I u(t̂, r , ω)− (v+ + v−)(T − t̂ − 2F (r), ω) = O(e−νT ) as
T → +∞.



Backward scattering fields

Theorem
Let u be a solution written in Ŝ of{
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Semiclassical description of the blueshift effect
I Near the black holes, asymptotically backwards waves look like

u−(T − 2F (r), ω)

where u−(x , ω) = 0 for x ≤ 0 and decays exponentially for
x ≥ 0.

I Using F (r) ∼ −(2κ−)−1 ln(r − r−) near r = r−,

u−(T − 2F (r), ω) ∼ u−

(
T +

1

κ−
ln(r − r−), ω

)
= u−

(
ln

(
r − r−

h

)
, ω

)
.

Above h = e−κ−T → 0 is a small parameter.
I The semiclassical wavefront set of the h-dependent

distribution

u−

(
ln

(
r − r−

h

)
, ω

)
satisfies WFh ⊂ {(r−, ω, ξ, 0)}. This gives a semiclassical
description of the blueshift effect.
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What does it tell us?

I No diffraction.

I Essentially one reflection that occurs at r = r−, t̂ = 1.

I As a consequence we can study the boundary problem near
r = r−, t̂ = 1. There the K–G operator is well approximated
by a constant coefficients operator with symbol

σ(�g )(1, r−, 0; τ, ξ, 0).

The angular part does not matter because the reflecting data
is only supported near radial frequencies.

I This gives a good enough approximation of u after reflection
for times in [1− ch, 1] for any fixed c > 0.
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Zoom in a box of size O(h) near r = r− and t̂ = 1

t̂ = 1

t̂ = 1− ch

r = r−

B∼ h

∼ h



Global study of the reflection
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Global study of the reflection

I We must show that the wave reflects essentially only once.

I For that we consider the KG equation (�+ m2)uWB = 0
without boundary, for times in [0, 1− ch], and initial data
u(t̂ = 1− ch).

I As the initial data is localized in frequencies ∼ h−1, we can
construct a WKB approximate solution for (�+ m2)uWB = 0.

I The trace of the approximate solution is O(h) on B.

I By Hörmander’s hyperbolic energy estimates, u (the solution
with boundary) is well approximated by this explicit WKB
parametrix for t ∈ [0, 1− ch], with error of order
O(h) = O(e−κ−T ).



Global study of the reflection

I We must show that the wave reflects essentially only once.

I For that we consider the KG equation (�+ m2)uWB = 0
without boundary, for times in [0, 1− ch], and initial data
u(t̂ = 1− ch).

I As the initial data is localized in frequencies ∼ h−1, we can
construct a WKB approximate solution for (�+ m2)uWB = 0.

I The trace of the approximate solution is O(h) on B.
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Global study of the reflection

I Going back to S∗, we get the theorem:

Theorem [D ’17]

If u solves {
(�g + m2)u = 0

(u, ∂tu)(T ) = (u0, u1) ∈ C∞0 , u|B = 0

then there exist u−, u+ smooth and exponentially decaying; and
c0 > 0 such that for t near 0, in S∗

u(0, x , ω) =
r−
r
u−

(
1

κ−
ln
( x

e−κ−T

)
, ω

)
WKB part from BH

+ u+(T − x , ω) scattering part to CH + OH1/2(e−c0T ).

I This describes the PDE part of the problem. A delicate
calculation remains to derive Hawking’s radiation from here.
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Extensions to non-symmetric backgrounds

I The simplest class consists of metric of the form

g = g0 + εη,

where g0 is the SdS metric; η = η(r , ω, dr , dω) is smooth and
vanishes in neighborhoods of r±; and ε is small.

I With the same strategy we obtain asymptotic for backward
solutions of {

(�g + m2)u = 0
(u, ∂tu)(T ) = (u0, u1), u|B = 0.

I It is more technical because the WKB phases and amplitudes
are no longer explicit; and because the angular propagation
kicks in.
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Asymptotic of scalar fields

Theorem [work in progress]

Consider u0, u1 smooth with compact support, and u solution of{
(�g + m2)u = 0

(u, ∂tu)(T ) = (u0, u1), u|B = 0.

There exist u−, u+ smooth and exponentially decaying with

u(0, x , ω) = a(0, x , ω) · u−
(

1

κ−
ln

(
φ(0, x , ω)

e−κ−T

)
, ψ(0, x , ω)

)
+ u+(T − x , ω) + OH1/2(e−c0T )

where:

I φ solves the eikonal equation g(∇φ,∇φ) = 0;

I ψ : R2 × S2 → S2 solves the linearized eikonal equation
g(∇φ,∇ψ) = 0;

I a solves the transport equation g(∇a,∇φ) +�φ = 0.
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