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Quantum field theory

» Particles are represented by wave functions .

v

Quantum fields are wave function functionals: E : ¢ — E(v)).

» If the particle dynamics is given by a propagator U(t,0), i.e.
Yr = U(t, 0)tho
then the state dynamics must satisfy
Ei(¢1) = Eo(to) & E:(U(t,0)v0) = Eo(t0)
< Ei(ve) = Eo(U(0, t)r).

> If you want to study the dynamics of quantum fields, you
must study the backward propagation given by U(0, t).

» This reduces the analysis of quantum fields to (a) a PDE
problem and (b) a (possibly difficult) computation.
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The Schwarzschild—de Sitter space

P It describes spherically symmetric black holes with positive
cosmological constant.

» It is the manifold R x (r_, ry) x S2, with Lorentzian metric
A r?

_ Broe 2_ 2
g—r—2dt —A—d — rédog2(w)

3
A(rs) =0, A, >0o0n (r_,ry).

;
/\2
Ar_r2<1—r>—2l\/lgr, AM >0

» This metric can be extended beyond the horizons r = r; and
r=r_.
» The surface gravities of the black hole and cosmological
horizons are characteristic parameters given by:
A7 (rs)

Ky = ——5—.
2r2
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Collapsing star in SdS

> We set another system of coordinates S, by (t, x,w) with

dx  r? A,

ax _ _Brog2 oy 2
& A, = &= (dt* — dx*) — r'dos2(w)

Radial geodesics propagate along t + x = cte and ry, r_ get
send to +o0o and —oo, respectively.
» Massive particles in radial free-fall to the black hole follow
curves (t,x(t),w) with x(t) = —t — Ae™2F-t 4 O(e~4"-1).
» A collapsing star is a timelike submanifold

B={(t,x,w) : x=z(t)}

where z(t) = —t — Ae= 2~ 4 O(e~*-1t) is a smooth
decreasing function.

» We want to study quantum fields in this space. We need an
evolution equation for particles.
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The evolution equation

» We consider spin-0 particles with mass m in the
Schwarzschild—de Sitter spacetime. The equation is given by

(Og + m?)u = 0.

» We put reflecting boundary conditions on the collapsing star.
We study the backward propagation starting at time
T — +oc:
(Og +m?)u=0
ulp="~0
(u, 0¢u)(T) = (ug, u1).
This is the mathematical basis for Hawking radiation.

» We will need to (a) study asymptotic of u(t = 0) when
T — 400 and (b) compute a certain functional E(u(t = 0))
where E is the vacuum quantum state.

» We will focus only on (a) in this talk.
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Asymptotic of scalar fields

Theorem [D ’17]
Consider ug, u1 smooth with compact support, and u solution of

(Og +m?)u=0
(u, 0:u)(T) = (uo, u1)
ulp =0.

There exist scattering fields (see later) u_, uy smooth and
exponentially decaying; and cy > 0 such that for t near 0,

u(0,x,w) = r7_u_ </j_ In (e—:fT) ,w)

+ U+(T — X,w) + OHl/z(e_CoT).

(k— Is the surface gravity of the black-hole.)
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Comments

» The black hole temperature _/(27) emerges.

» The fields u_ and u4 are Freidlander's radiation fields; they
do not depend on B.

» Thus the result gives exponential convergence to equilibrium.
The rate ¢y can be computed explicitly: it depends only on
k—, k4 and the first resonance of the K-G equation on the
black-hole background.
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respect to a Hamiltonian H.

» Let Hy be the black-hole Klein—Gordon Hamiltonian in S,:
the K—-G equation takes the form (02 — Hp)u = 0.

» Thanks to the theorem:

EHo-27 /54 (U0, T)(uo, u1))
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» Interpretation: at time O, the quantum state is that of a
Bose—Einstein gas with cosmological background temperature

riq/(2).
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Let EF.% the Bose—Einstein state at temperature 1/ with
respect to a Hamiltonian H.

Let Hy be the black-hole Klein-Gordon Hamiltonian in S,:
the K—-G equation takes the form (02 — Hp)u = 0.

Thanks to the theorem:

EHo-27/%4 (10, T)(uo, u1))

= IE*ZDXZ’M/’”(UJr7 Dxu+)'ED3’2“/“—(u_, Dxu_)-(l +0 (e*C°T>> :

Interpretation: at time 0, the quantum state is that of a
Bose—Einstein gas with cosmological background temperature
riq/(2m).

As time goes, this state splits to two Bose—Einstein states
with respect to the asymptotic Hamiltonians D?2.

The first one sees no change in temperature while the second
one acquires the black-hole temperature x_/(27).
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Previous related results

» Bachelot late 90s, Melnyk early '00s — emission of bosons and
of fermions by Schwarzschild black holes and
Schwarzschild—de Sitter black holes.

» Hafner /09 — emission of fermions by Kerr black-holes. First
(and only) non-spherically symmetric setting.

» Bouvier—Gérard ‘13 — Hawking effect for interacting fermions

» This work provides the first rates of convergence. The
previous proofs were not fully constructive.

> We take full advantage of recent decay results for waves in
black hole spacetimes. For the dS black-holes, see
Bachelot—Motet-Bachelot /93, Sa-Barreto—Zworski /97
(resonances), Bony—Hafner ‘07 (exponential decay),
Dafermos—Rodnianski ‘07 (polynomial decay),
Melrose-Sa-Barreto—Vasy ‘08, Vasy ‘13 (geometric methods),
Dyatlov ‘11 —' 12 (rotating black holes), Hintz—Vasy '14—
(non-linear results),...
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New system of coordinates

» It is more convenient to study the propagation in a different
system of coordinates that somehow " follows" the collapse,
denoted by S.

> Set

X 1
t=t—F(r), F(r)~ —Eln |r — ry| for r near ry.

In (£, r,w) the metric is smooth across r = ry.

P> We are studying the backward propagation. Nothing can cross
the horizons. Hence the propagation takes place in compact
smooth slices.

> After possibly rescaling, in S the collapsing star is given by

B={(t,z(t),w)}, z(f)=r-—a(t—1)+0O(f - 1)



Propagation in §
g or=r_ r=ry
up, Uy
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Why study propagation in S instead of S,?

» Due to the blueshift the wave gets localized on a region of size
Ar—0as T — oo.

in 8. The typical frequency of the wave blows up: A¢ — occ.

» The boundary affects the behavior of the wave only for
t €[0,1] i.e. only for fixed time.

» A standard wave WKB parametrix for € [0, 1] allows to
analyze the impact of the boundary.

» In S, the boundary affects the propagation for t € [0, T/2]. A
harder high frequency analysis is required: it needs to work for
for time intervals of size T /2 — oc.

» Now we study two separate problems: propagation for
t € [1, T] (before reflection) and propagation for t € [0, 1]
(after reflection).
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Goal: understand the behavior as £ — —oo to solutions of
(O+ m?)u =0.

The equation is invariant under time-reversion t — —t. It
suffices to understand forwards scattering, then reverse time.

Under time reversion, the surface £ = —oo becomes
{r=r_}Uu{r=ry}.

Therefore: scattering fields are obtained by tracing forwards
solutions along the horizons, then reversing time.

This constructs uy and u_. Melrose-Sa-Barreto—Vasy '08
(later extended by Dyatlov '12 and Vasy '13) shows that they
decay exponentially.

This strategy is due to Friedlander '80s (in the more
complicated Euclidean scattering). For related perspectives in
MGR, see Gérard—Georgescu—Hafner '14-'17, Nicolas '17,
Dafermos—Rodnianski—Shlapentokh-Rothman '17.
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Backward scattering fields

Theorem
Let u be a solution written in & of

{ (Og +m?)u=0
(u,0ru)(t=T) = (ug, 1) € C§°

Let i(f, r,w) = u(—t — 2F(r) + T, r,w) (the time-reversed
solution). Set vy be the traces of i on the horizons ry.:

ve(x,w) = d(x, re,w).

Then for some v > 0,
» vi(x,w) =0 for x <0 and vi(x,w) = O(e ") for large x.

> u(E,r,w) = (v + v )(T = = 2F(r)w) = O(e™T) as
T — +o0.
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Semiclassical description of the blueshift effect
» Near the black holes, asymptotically backwards waves look like
u_(T —2F(r),w)

where u_(x,w) = 0 for x < 0 and decays exponentially for
x> 0.
» Using F(r) ~ —(2k-)7tIn(r —r_) near r =r_,

u_ (T — 2F(r),w) ~ u_ <T+ ﬂi In(r — r_),w>

—e(n(55) <)

Above h = e *-T — 0 is a small parameter.
» The semiclassical wavefront set of the h-dependent

r — r

satisfies WF;, C {(r—,w,&,0)}. This gives a semiclassical
description of the blueshift effect.
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What does it tell us?

v

No diffraction.
Essentially one reflection that occurs at r = r_, £ = 1.

As a consequence we can study the boundary problem near
r=r_,t =1. There the K-G operator is well approximated
by a constant coefficients operator with symbol

o(0g)(1,r-,0;7,&,0).

The angular part does not matter because the reflecting data
is only supported near radial frequencies.

This gives a good enough approximation of u after reflection
for times in [1 — ch, 1] for any fixed ¢ > 0.
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Global study of the reflection

» We must show that the wave reflects essentially only once.

» For that we consider the KG equation (0 + m?)uwg = 0
without boundary, for times in [0,1 — ch], and initial data
u(f=1-ch).

> As the initial data is localized in frequencies ~ h~!, we can
construct a WKB approximate solution for (OO + m?)uwg = 0.

» The trace of the approximate solution is O(h) on B.

» By Hormander's hyperbolic energy estimates, u (the solution
with boundary) is well approximated by this explicit WKB
parametrix for t € [0,1 — ch], with error of order

O(h) = O(e~"-T).
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» Going back to S,, we get the theorem:
Theorem [D '17]
If u solves
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Global study of the reflection

» Going back to S,, we get the theorem:
Theorem [D '17]

If u solves

{ (Og +m?)u=0
(u,0¢u)(T) = (o, 1) € C§°, ulp=0

then there exist u_, u, smooth and exponentially decaying; and
co > 0 such that for t near 0, in S,

_ 1
u(0,x,w) = Ll < In <ﬁ%) ,w) WKB part from BH

r K_—

+ uy (T — x,w) scattering part to CH + Oppj2(e™T).

» This describes the PDE part of the problem. A delicate
calculation remains to derive Hawking's radiation from here.
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Extensions to non-symmetric backgrounds

> The simplest class consists of metric of the form

g =8 temn,

where gy is the SdS metric; n = n(r,w, dr, dw) is smooth and
vanishes in neighborhoods of ry; and ¢ is small.

» With the same strategy we obtain asymptotic for backward
solutions of

{ (Og +m?)u=0
(u,0¢u)(T) = (uo, 1), ulg=0.

» |t is more technical because the WKB phases and amplitudes
are no longer explicit; and because the angular propagation
kicks in.



Asymptotic of scalar fields
Theorem [work in progress]

Consider ug, u1 smooth with compact support, and u solution of

{ (Og +m*)u=0
(u, Oru)(T) = (uo, u1), ulp=0.



Asymptotic of scalar fields

Theorem [work in progress]
Consider ug, u1 smooth with compact support, and u solution of

{ (Og +m?)u=0
(u, Oru)(T) = (uo, u1), ulp=0.

There exist u_, uy smooth and exponentially decaying with

u(0, x,w) = (0, x,w) - 1 (1 In (q&’(;")) ,w(O,X,w)>

K—

+up (T — x,w) + Oz (e7T)

where:



Asymptotic of scalar fields
Theorem [work in progress]

Consider ug, u1 smooth with compact support, and u solution of

{ (Og +m?)u=0
(u, Oru)(T) = (uo, u1), ulp=0.

There exist u_, uy smooth and exponentially decaying with

u(0, x,w) = (0, x,w) - 1 (1 In (q&’(;")) ,w(O,X,w)>

K—

+up (T — x,w) + Oz (e7T)

where:
» ¢ solves the eikonal equation g(V¢, V@) =0;



Asymptotic of scalar fields

Theorem [work in progress]
Consider ug, u1 smooth with compact support, and u solution of

{ (Og +m?)u=0
(u, Oru)(T) = (uo, u1), ulp=0.

There exist u_, uy smooth and exponentially decaying with
1 ¢(0, x,w
u(0,x,w) = a(0, x,w) - u_ </<c_ In <E_,—m7')> ,w(O,x,w)>

+up (T — x,w) + Oz (e7T)

where:
» ¢ solves the eikonal equation g(V¢, V@) =0;

» ) : R? x S? — S? solves the linearized eikonal equation
g(Vo, Vi) =0;



Asymptotic of scalar fields

Theorem [work in progress]
Consider ug, u1 smooth with compact support, and u solution of

{ (Og +m?)u=0
(u, Oru)(T) = (uo, u1), ulp=0.

There exist u_, uy smooth and exponentially decaying with
1 ¢(0, x,w
u(0,x,w) = a(0, x,w) - u_ </<c_ In <£_K.’.)> ,w(O,x,w)>

+ U (T = x,w) + Oppya(e™®T)

where:
» ¢ solves the eikonal equation g(V¢, V@) =0;

» ) : R? x S? — S? solves the linearized eikonal equation
g(Ve, Vi) =0;
» a solves the transport equation g(Va,V¢) + Op = 0.
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» Perform the second step in this setting: derive Hawking's
result from the previous theorem.

» Generalize these ideas to Kerr—de Sitter (and beyond!)

Thank you!



