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BALANCED GEOMETRIC WEYL QUANTIZATION

The usual Weyl quantization of b ∈ S ′(Rd×Rd) is the
operator Op(b) : S(X )→ S ′(X ) with the kernel

Op(b)(x, y) :=

∫
b
(x + y

2
, p
)

ei(y−x)p dp

(2π)d
.

Hilbert-Schmidt operators correspond to square inte-
grable symbols:

(2π)−dTrOp(a)∗Op(b) =

∫
a(z, p)b(z, p)dzdp.



Consider a (pseudo-)Riemannian manifold M . Let x ∈
M and u ∈ TxM . We will write

x + u := expx(u).

There exists a geodesic neighborhood Ω ⊂ M ×M of
the diagonal with the property that every pair (x, y) ∈ Ω
is joined by a unique geodesics [0, 1] 3 τ 7→ γx,y(τ ) such
that γx,y × γx,y ⊂ Ω.



Let (x, y) ∈ Ω.
y− x will denote the unique vector in TxM tangent to

the geodesics γx,y such that

x + (y − x) = y.

(y−x)τ will denote the vector in Tx+τ (y−x)M such that(
x + τ (y − x)

)
+ (1− τ )(y − x)τ = y.



The Van Fleck–Morette determinant is defined as

∆(x, y) :=
∣∣∣∂(y − x)

∂y

∣∣∣|g(x)|
1
2

|g(y)|
1
2

.

Note that

∆(x, y) = ∆(y, x), ∆(x, x) = 1.



If B is an operator C∞c (M) → D′(M) then its kernel
is a distribution in D′(M ×M) such that

〈f |Bg〉 =

∫
f (x)B(x, y)g(y)dxdy, f, g ∈ C∞c (M).

We will treat elements of C∞c (M) not as scalar func-
tions, but as half-densities. With this convention, the
kernel of an operator is a half-density on M ×M .



Assume for simplicity that Ω = M ×M . Consider

T∗M 3 (z, p) 3 b(z, p)

Its balanced geometric Weyl quantization, denoted Op(b),
is the operator with the kernel

Op(b)(x, y) :=∆(x, y)
1
2
|g(x)|

1
4|g(y)|

1
4∣∣g(z)|12

×
∫
b
(
z, p
)
eiup dp

(2π)d
,

where

z := x +
y − x

2
, u := (y − x)1

2
.



Note that T ∗M possesses a natural density, hence there
is a natural identification of scalars with half-densities.

Up to a coefficient, the quantization that we defined is
unitary from L2(T ∗M) to operators on L2(M) equipped
with the Hilbert-Schmidt scalar product:

1

(2π)d

∫
T ∗M

c(x, p)b(x, p)dxdp = TrOp(c)∗Op(b).



Define the star product

Op(a ? b) = Op(a)Op(b).

Its asymptotic expansion in Planck’s constant:

(a ? b) ∼ ab

+ i
2

(
aαb

α − aαbα
)

− 1
8

(
aα1α2b

α1α2 − 2a
α2
α1b

α1
α2 + aα1α2bα1α2

)
+ 1

12Rα1α2a
α2bα1

− 1
24R

β
α1α2α3pβ

(
aα2bα1α3 + aα1α3bα2

)
+ . . .

where lower indices denote horizontal derivatives (in spa-
tial directions) and upper indices denote vertical deriva-
tives (in momentum directions).



SCHRÖDINGER OPERATORS ON A RIEMANNIAN
MANIFOLD—THE ASYMPTOTICS OF THEIR

INVERSE AROUND THE DIAGONAL

Consider a symbol quadratic in the momenta, with the
principal part given by the Riemannian metric:

k(z, p) = gµν(z)
(
pµ − Aµ(z)

)(
pν − Aν(z)

)
+ Y (z).

Its quantization is a magnetic Schrödinger operator

K := Op(k) =|g|−
1
4(Dµ − Aµ)|g|

1
2gµν(Dν − Aν)|g|−

1
4

+
1

6
R + Y.



K is a self-adjoint operator on L2(M). We are inter-
ested in the corresponding

heat semigroup W (t) := e−tK, Ret > 0

and Green’s operator (inverse) G :=
1

K
.

They are closely related:

G =

∫ ∞
0

W (t)dt.



We would like to compute the asymptotics of their ker-
nels around the diagonal. We make the ansatz

W (t) = Op
(
w(t)

)
,

w(t, z, p) ' e−tk(z,p)
∞∑
n=0

tn

n!
wn(z, p),

w0(z, p) = 1.



By applying the geoemetric pseudodifferential calculus
one can iteratively find wn and show that

wn(z, p) '
∑
|α|≤3

2n

wn,α(z)
(
p− A(z)

)α
.

Note that the naive bound would be |α| ≤ 2n, however
one can improve it to |α| ≤ 3

2n.



From this one obtains

W (t, x, y) ' t−
d
2C(x, y) exp

(
− 1

4t
ug−1(z)u− tY (z)

)
×

∑
−|β|≤3k

tkuβWk,β(z)e−iuA(z),

where C(x, y) is a geometric factor. As usual,

z := x +
y − x

2
, u := (y − x)1

2
.



Assume that Y > 0. By integrating the heat kernel we
obtain a representation of Green’s operator:

G(x, y) ' 2C(x, y)
∑
−|β|≤3k

uβWk,β(z)e−iuA(z)

×K
k+1−d2

(√
ug−1(z)uY (z)

)(ug−1(z)u

4Y (z)

)k+1−d2
2

,

where Km are the MacDonald functions.



Using the well-known expansions of the MacDonald func-
tions we obtain

G(x, y) ' 2C(x, y)e−iuA(z)

×

((ug−1(z)u

4Y (z)

)1−d2 ∑
α

uαwα(z)

+ log
(ug−1(z)u

4Y (z)

)∑
α

uαvα(z)

)
.

(In odd dimensions the term with the logarithm is ab-
sent).



KLEIN-GORDON OPERATORS, THEIR INVERSES
AND BISOLUTIONS (PROPAGATORS)

Assume now that M is a globally hyperbolic Lorentzian
manifold.

The operator K, formally defined by the same expres-
sion as before,

K :=|g|−
1
4(Dµ − Aµ)|g|

1
2gµν(Dν − Aν)|g|−

1
4 + Y

is then called a Klein-Gordon operator. Its mathemat-
ical theory is much more complicated than that of a
Schrödinger operator.



We say that G is a bisolution of K if

GK = KG = 0.

We say that G is an inverse (Green’s function or a fun-
damental solution) if

GK = KG = 1.

Let us discuss distinguished bisolutions and inverses.
We will call them propagators. (This word is often used
in this context in quantum field theory).



On the Minkowski space:

the forward/backward or advanced/retarded propagator

G∨/∧(p) :=
1

(p2 + m2 ∓ i0sgnp0)
,

the Feynman/anti-Feynman propagator

GF/F(p) :=
1

(p2 + m2 ∓ i0)
,

the Pauli-Jordan propagator

GPJ(p) := sgn(p0)δ(p2 + m2),

and the positive/negative frequency bisolution

G(+)/(−)(p) := θ(±p0)δ(p2 + m2).



In QFT textbooks, the Pauli-Jordan propagator expresses
commutation relations of fields, and hence it is often
called the commutator function.

The positive frequency bisolution is the vacuum 2-point
function.

The Feynman propagator is the expectation value of
time-ordered products of fields and is used to evaluate
Feynman diagrams.



It is well-known that on an arbitrary globally hyperbolic
spacetime one can define the forward propagator (inverse)
G∨ and the backward propagator (inverse) G∧.

Their difference is a bisolution called sometimes the
Pauli-Jordan propagator (bisolution)

GPJ := G∨ −G∧.
All of them have a causal support. We will jointly call

them classical propagators. They are relevant for the
Cauchy problem.



We are however more interested in “non-classical prop-
agators”, typical for quantum field theory. They are less
known to pure mathematicians and more difficult to de-
fine on curved spacetimes:

• the Feynman propagator GF,

• the anti-Feynman propagator GF,

• the positive frequency bisolution G(+),

• the negative frequency bisolutions G(−).



There exists a well-known paper of Duistermat-Hörmander,
which defined Feynman parametrices (a parametrix is an
approximate inverse in appropriate sense).

There exists a large literature devoted to the so-called
Hadamard states, which can be interpreted as bisolutons
with approximately positive frequencies. These are how-
ever large classes of bisolutions. We would like to have
distinguished choices.



It is helpful to introduce a time variable t, so that the
spacetime is M = R × Σ. Assume that there are no
time-space cross terms so that the metric can be written
as

−g00(t, ~x)d2t + gij(t, ~x)dxidxj.

By conformal rescaling we can assume that g00 = 1, so
that, setting V := A0, we have

K = −(i∂t + V )2 + L,

L = −|g|−
1
4(i∂i + Ai)|g|

1
2gij(i∂j + Aj)|g|−

1
4 + Y.



We rewrite the Klein-Gordon equation as a 1st order
equation given by

∂t + iB(t),

where

B(t) :=

(
W (t) 1
L(t) W (t)

)
,

W (t) := V (t) +
i

4
|g|(t)−1∂t|g|(t).



Denote by U(t, t′) the dynamics defined by B(t), that
is

∂tU(t, t′) = −iB(t)U(t, t′),
U(t, t) = 1.

Note that if

E =

(
E11 E12
E21 E22

)
is a bisolution/inverse of ∂t + iB(t), then E12 is a biso-
lution/inverse of K.



The classical propagators can be easily expressed in
terms of the dynamics:

EPJ(t, t′) := U(t, t′), EPJ
12 = −iGPJ;

E∨(t, t′) := θ(t− t′)U(t, t′), E∨12 = −iG∨;

E∧(t, t′) := −θ(t′ − t)U(t, t′), E∧12 = −iG∧.



We introduce the charge matrix

Q :=

(
0 1
1 0

)
.

and the classical Hamiltonian

H(t) := QB(t) =

(
L(t) W (t)
W (t) 1

)
.

We will assume that H(t) is positive and invertible. (Ex-
istence of a mass gap).



Assume now for a moment that the problem is static,
so that L, V , B, H do not depend on time t. Clearly,

U(t, t′) = e−i(t−t′)B.

The quadratic formH defines the so-called energy scalar
product. It is easy to see that B can be interpreted as a
self-adjoint operator with a gap in its spectrum around 0.
Let Π(±) be the projections onto the positive/negative
part of the spectrum of B.



We define the positive and negative frequency bisolu-
tions and the Feynman and anti-Feynman inverse on the
level of ∂t + iB(t):

E(±)(t, t′) := ±e−i(t−t′)BΠ(±),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(+) − θ(t′ − t) e−i(t−t′)BΠ(−),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(−) − θ(t′ − t) e−i(t−t′)BΠ(+).



They lead to corresponding propagators on the level of
K:

G(±) := E
(±)
12 ,

GF := −iEF
12,

GF := −iEF
12.

They satisfy the relations

GF −GF = iG(+) + iG(−),

GF + GF = G∨ + G∧.



In the static case in QFT there is a distinguished state
given by the vacuum Ω. The nonclassical propagators are
often called 2-point functions, because they are vacuum
expectation values of free fields:

G(+)(x, y) =
(
Ω|φ̂(x)φ̂(y)Ω

)
,

GF(x, y) = −i
(
Ω|T

(
φ̂(x)φ̂(y)

)
Ω
)
.

GF is used to evaluate Feynman diagrams.



It is easy to see that on a general spacetime the Klein-
Gordon operator K is Hermitian (symmetric) on C∞c (M)
in the sense of the Hilbert space L2(M).

Theorem. [D., Siemssen] Assume the spacetime is static.
(1) K is essentially self-adjoint on C∞c (M).
(2) For s > 1

2, the operator GF is bounded from the

space 〈t〉−sL2(M) to 〈t〉sL2(M). Besides, in the sense
of these spaces,

s− lim
ε↘0

(K − iε)−1 = GF.



Can one generalize non-classical propagators to non-
static spacetimes? We will assume that the spacetime is
close to being static and for large times it approaches a
static spacetime sufficiently fast.

In the non-static case we do not have a single energy
space, because the Hamiltonian depends on time. We
make technical assumptions that make possible to define
a Hilbertizable energy space in which the dynamics is
bounded.



One can define the incoming positive/negative frequency
bisolution by cutting the phase space with the projections

Π
(±)
− onto the positive/negative part of the spectrum of

B(−∞). Π
(+)
− defines the vacuum state in the distant

past given by a vector Ω−. It corresponds to a prepara-
tion of an experiment.



Analogously, one can define the outgoing positive/negative

bisolutions by using the projections Π
(±)
+ onto the posi-

tive/negative part of the spectrum of B(∞). They cor-
respond to the vacuum state in the remote future given
by a vector Ω+. This vector is related to the future mea-
surments.



The projection Π
(+)
− can be transported by the dynamics

to any time t, obtaining the projection Π
(+)
− (t). Similarly

we obtain the projection Π
(−)
+ (t). Using the fact that

the dynamics is symplectic, one can show that for a large
class of spacetimes for all t the subspaces

RanΠ
(+)
− (t), RanΠ

(−)
+ (t)

are complementary.



Define Π
(+)
can(t), Π

(−)
can (t) to be the unique pair of pro-

jections corresponding to the pair of spaces

RanΠ
(+)
− (t), RanΠ

(−)
+ (t)

The canonical Feynman propagator is defined as

EF(t2, t1) := θ(t2 − t1)U(t2, t1)Π
(+)
can(t1)

−θ(t1 − t2)U(t2, t1)Π
(−)
can (t1),

GF := −iEF
12.



In a somewhat different setting, in the case of mass-
less Klein-Gordon operator GF was considered before by
A.Vasy et al. A similar construction can be found in a
recent paper of Gerard-Wrochna.

Here is the physical meaning of the canonical Feyn-
man propagator: it is the expectation value of the time-
ordered product of fields between the in-vacuum and the
out-vacuum:

GF(x, y) =

(
Ω+|T

(
φ̂(x)φ̂(y)

)
Ω−
)(

Ω+|Ω−
) .



Thus for a large class of asymptotically static space-
times one can show the existence of a distinguished Feyn-
man propagator. One can make a stronger cojejecture:

Conjecture. On a large class of spacetimes (e.g. for
compactly supported perturbations of static spacetimes)
the Klein-Gordon operator K is essentially self-adjoint on
C∞c (M) and in the sense 〈t〉−sL2(M)→ 〈t〉sL2(M),

s− lim
ε↘0

(K − iε)−1 = GF.

In a recent paper of A. Vasy this conjecture is proven for
asymptotically Minkowskian spaces. This is also true on
a large class of cosmological spacetimes.



ASYMPTOTICS OF PROPAGATORS
AROUND THE DIAGONAL

In the Lorentzian case, even if we can interpret K as
self-adjoint, the heat semigroup does not exists and in-
stead one should consider the so-called proper time dy-
namics W (it) = e−itK .



One can apply the geoometric pseudodifferential calcu-
lus to find the asymptotics of W (it) around the diagonal.

W (it, x, y) ' (it)−
d
2C(x, y) exp

(
− 1

4it
ug−1(z)u− itY (z)

)
×

∑
−|β|≤3k

(it)kuβWk,β(z)e−iuA(z).



One can obtain the Feynman and the anti-Feynman
propagator by integration:

GF := (K − i0)−1 = i

∫ ∞
0

W (it)dt,

GF := (K + i0)−1 = −i

∫ ∞
0

W (−it)dt.



Here is the asymptotics of the Feynman and anti-Feynman
propagator:

GF/F(x, y)

' 2C(x, y)
∑
−|β|≤3k

uβWk,β(z)e−iuA(z)

×±iK
k+1−d2

(√
ug−1(z)uY (z)± i0

)(ug−1(z)u± i0

4Y (z)

)k+1−d2
2

.

Note that for spacelike u we can drop ±i0.



For timelike u the propagators are obtained by an ap-
propriate analytic continuation. In particular, instead of
the MacDonald function

± 2iK
k+1−d2

(√
ug−1(z)uY (z)± i0

)
,

we put − πH±
k+1−d2

(√
−ug−1(z)uY (z)∓ i0

)
,

where H±m are the Hankel functions of the first and sec-
ond kind.



Note that the asymptotic expansion of 1
2(GF + GF )

vanishes for spacelike separated points. The same prop-
erty is shared by 1

2(G∨+G∧). Indeed, on the level of full
asymptotic expansions we have

GF + GF ' G∨ + G∧.

Let us stress that this does not imply

GF + GF = G∨ + G∧,

except for some special spacetimes.



We can compute the asymptotics of the retarded and
advanced propagators:

G∨/∧(x, y) ' πC(x, y)
∑
−|β|≤3k

uβWk,β(z)e−iuA(z)

× J
k+1−d2

(√
ug−1(z)uY (z)

)(ug−1(z)u

4Y (z)

)k+1−d2
2

,

u2 ≤ 0, ±u0 ≥ 0,

where Jm are the Bessel functions.



We will say that a pair of positive bisolutions G(+)/(−)

of the Klein-Gordon equation satisfies the quasi-vacuum
condition if

G(+) −G(−) = iGPJ

and its asymptotics around the diagonal is given by

G(+)/(−) = −iGF + iG∨/∧.

It is easy to show that such bisolutions exist. For instance,
if our spacetime has a static period, then the bisolutions
defined by the positive/negative frequency projections in-
side this period will satisfy this condition.



The behavior around the diagonal of quasi-vacuum biso-
lutions is fully determined by the geometry:

G(+)/(−)(x, y) ' 2C(x, y)
∑
−|β|≤3k

uβWk,β(z)e−iuA(z)

×±iK
k+1−d2

(√
ug−1(z)uY (z)± isgn(u0)0

)

×

(
ug−1(z)u± isgn(u0)0

4Y (z)

)k+1−d2
2

.



In the contemporary mathematical community the con-
cept which is viewed as the standard one is the so-called
Hadamard condition, where the requirement about the
asymptotics around the diagonal is replaced by a con-
dition on the wave front set. This condition is much
broader: it includes various kinds of temperature states,
which may have a different behavior around the diagonal.

The class of quasi-vacuum states is more narrow. One
can argue that they are the most natural states for QFT
on curved spacetimes.


