Inverse scattering at fixed energy in Kerr-Newman-de Sitter black holes.

Thierry Daudé

Université de Cergy-Pontoise
(Joint work with Francois Nicoleau, Université de Nantes)

Les Houches, May 25, 2018.

Outline of the talk

- Kerr-Newman-de-Sitter black holes (rotating black holes):
- Spacetime (\mathcal{M}, g) with g Lorentzian metric.
- g completely characterized by $M>0$ (mass), $Q \in \mathbb{R}$ (electric charge), $a \in \mathbb{R}^{*}$ (angular momentum per unit mass) and $\Lambda>0$ (cosmological constant).
"Can we determine g by observing waves at infinities?"
- Massless Dirac fields in KN-dS black holes:
- Dirac waves: $i \partial_{t} u=\mathbb{D} u, \mathbb{D}$ Dirac operator.
- Scattering matrix $S_{g}(\lambda), \lambda$ a fixed energy.
- Main result:
- $g \longrightarrow S_{g}(\lambda)$ is one-to-one for a fixed energy $\lambda \in \mathbb{R}$.
- Actually, our result is better.

Kerr-Newman-de-Sitter Black Holes

- Spacetime (\mathcal{M}, g) :

$$
\left.\mathcal{M}=\mathbb{R}_{t} \times \Sigma, \quad \Sigma=\right] r_{-}, r_{+}\left[r \times \mathbb{S}_{\theta, \varphi}^{2}\right.
$$

equipped with a Lorentzian metric

$$
\begin{aligned}
g= & \frac{\Delta_{r}-\Delta_{\theta} a^{2} \sin ^{2} \theta}{\rho^{2}} d t^{2}-\frac{2 a \sin ^{2} \theta}{E \rho^{2}}\left(\Delta_{r}-\Delta_{\theta} a^{2} \sin ^{2} \theta\right) d t d \varphi \\
& -\frac{\rho^{2}}{\Delta_{r}} d r^{2}-\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2}-\frac{\sin ^{2} \theta}{E^{2} \rho^{2}}\left(\Delta_{\theta}\left(r^{2}+a^{2}\right)^{2}-\Delta_{r} a^{2} \sin ^{2} \theta\right) d \varphi^{2} .
\end{aligned}
$$

where

$$
\rho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \quad E=1+\frac{a^{2} \Lambda}{3}>0, \quad \Delta_{\theta}=1+\frac{a^{2} \Lambda \cos ^{2} \theta}{3}>0
$$

$$
\Delta_{r}=\left(r^{2}+a^{2}\right)\left(1-\frac{\Lambda r^{2}}{3}\right)-2 M r+Q^{2}
$$

The event and cosmological horizons

- Singularities: Δ_{r} possesses 4 roots: $r_{n}<0<r_{c}<r_{-}<r_{+}$if

$$
\begin{aligned}
& \text { (1) } \quad \frac{a^{2} \Lambda}{3} \leq 7-4 \sqrt{3} \\
& \text { (2) } M_{c r i t}^{-}<M<M_{c r i t}^{+},
\end{aligned}
$$

with

$$
\begin{aligned}
M_{c r i t}^{ \pm}= & \frac{1}{\sqrt{18 \Lambda}}\left(\left(1-\frac{a^{2} \Lambda}{3}\right) \pm \sqrt{\left(1-\frac{a^{2} \Lambda}{3}\right)^{2}-4 \Lambda\left(a^{2}+Q^{2}\right)}\right)^{2} \\
& \left(2\left(1-\frac{a^{2} \Lambda}{3}\right)^{2} \mp \sqrt{\left(1-\frac{a^{2} \Lambda}{3}\right)^{2}-4 \Lambda\left(a^{2}+Q^{2}\right)}\right)
\end{aligned}
$$

- Cosmological and event horizons: $\left\{r=r_{ \pm}\right\}$

$$
\Delta_{r}>0 \text { in }\left\{r_{-}<r<r_{+}\right\}
$$

Properties of KN-dS black holes

- Symmetries:
- Cylindrical symmetry (∂_{φ} Killing vector field).
- Time-translation (∂_{t} Killing vector field).
- Nullcones: $\partial_{r}, \partial_{\theta}, \partial_{\varphi}$ everywhere spacelike in \mathcal{M}. ∂_{t} everywhere timelike except on the two ergospheres

$$
\mathcal{E}^{ \pm}=\left\{(r, \theta) \in \mathcal{M}, \Delta_{r}-\Delta_{\theta} a^{2} \sin ^{2} \theta<0\right\}
$$

where it becomes spacelike.

- Lack of stationarity: there exists no globally defined timelike Killing vector field on \mathcal{M}.

Properties of Kerr-Newman-de-Sitter black holes

- stationary observers: observers living on the worldlines

$$
r=\text { const }, \theta=\text { const }, \varphi=\omega t+\text { const }
$$

with $\omega=$ const. For such observers, if $r_{-} \ll r \ll r_{+}$, then the variable t corresponds to their proper time.

- Principal null geodesics: the spacetime \mathcal{M} is foliated by the two families of incoming and outgoing principal null geodesics generated by

$$
V^{ \pm}=\frac{r^{2}+a^{2}}{\Delta_{r}}\left(\partial_{t}+\frac{a E}{r^{2}+a^{2}} \partial_{\varphi}\right) \pm \partial_{r}
$$

The principal null geodesics do not reach $\left\{r=r_{ \pm}\right\}$in a finite time t ! The horizons are perceived as asymptotic regions by stationary observers.

A new radial variable

- Tortoise radial variable: $\left\{r=r_{ \pm}\right\} \leftrightarrow\{x= \pm \infty\}$.

$$
\frac{d x}{d r}=\frac{r^{2}+a^{2}}{\Delta_{r}}
$$

$$
x=\frac{1}{2 \kappa_{-}} \ln \left(r-r_{-}\right)+\frac{1}{2 \kappa_{+}} \ln \left(r_{+}-r\right)+\frac{1}{2 \kappa_{c}} \ln \left(r-r_{c}\right)+\frac{1}{2 \kappa_{n}} \ln \left(r-r_{n}\right)+c,
$$

- c is any constant of integration.
- $\kappa_{j}=\frac{\Delta_{r}^{\prime}\left(r_{j}\right)}{2\left(r_{j}^{2}+a^{2}\right)}, j=-,+, c, n$.
- New framework: $\mathcal{B}=\mathbb{R}_{t} \times \mathbb{R}_{x} \times \mathbb{S}_{\theta, \varphi}^{2}$,

$$
\begin{aligned}
g= & \frac{\Delta_{r}}{\rho^{2}}\left[d t-\frac{a \sin ^{2} \theta}{E} d \varphi\right]^{2}-\frac{\rho^{2} \Delta_{r}}{\left(r^{2}+a^{2}\right)^{2}} d x^{2}-\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2} \\
& -\frac{\Delta_{\theta} \sin ^{2} \theta}{\rho^{2}}\left[a d t-\frac{r^{2}+a^{2}}{E} d \varphi\right]^{2} .
\end{aligned}
$$

Massless Dirac fields in KN-dS black holes

Dirac fields: $\psi \in \mathcal{H}=L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}, d x d \theta d \varphi ; \mathbb{C}^{2}\right)$ and satisfies

$$
i \partial_{t} \psi=H \psi
$$

where

$$
H=J^{-1} H_{0}, \quad H_{0}=\Gamma^{1} D_{x}+a(x) H_{\mathbb{S}^{2}}+c\left(x, D_{\varphi}\right)
$$

- $D_{x}=-i \partial_{x}, D_{\theta}=-i \partial_{\theta}, D_{\varphi}=-i \partial_{\varphi}$.
- Angular Dirac operator:

$$
H_{\mathbb{S}^{2}}=\sqrt{\Delta_{\theta}}\left[\Gamma^{2} D_{\theta}+\Gamma^{2} \frac{i \wedge a^{2} \sin (2 \theta)}{12 \Delta_{\theta}}+\frac{\Gamma^{3}}{\sin \theta} D_{\varphi}+\Gamma^{3} \frac{\wedge a^{2} \sin (\theta)}{3 \Delta_{\theta}} D_{\varphi}\right] .
$$

- Dirac matrices: $\Gamma^{i} \Gamma^{j}+\Gamma^{j} \Gamma^{i}=2 \delta_{i j} l_{2}, \quad \forall i, j=1,2,3$.

$$
\Gamma^{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \Gamma^{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \Gamma^{3}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) .
$$

Massless Dirac fields in KN-dS black holes

- Dirac equation:

$$
i \partial_{t} \psi=H \psi, \quad H=J^{-1} H_{0}, \quad H_{0}=\Gamma^{1} D_{x}+a(x) H_{\mathbb{S}^{2}}+c\left(x, D_{\varphi}\right) .
$$

- Potentials:

$$
\begin{gathered}
a(x)=\frac{\sqrt{\Delta_{r}}}{r^{2}+a^{2}}, \quad c\left(x, D_{\varphi}\right)=\frac{a E}{r^{2}+a^{2}} D_{\varphi}+\frac{q Q r}{r^{2}+a^{2}} \\
J=I_{2}+a(x) b(\theta) \Gamma^{3}, \quad b(\theta)=\frac{a \sin \theta}{\sqrt{\Delta_{\theta}}} \\
J^{-1}=\left(1-a(x)^{2} b(\theta)^{2}\right)\left(I_{2}-a(x) b(\theta) \Gamma^{3}\right)
\end{gathered}
$$

- Cylindrical symmetry: The equation is simplified by decomposing it onto the angular modes $\left\{e^{i k \varphi}\right\}, k \in \frac{1}{2}+\mathbb{Z}$.

$$
D_{\varphi} \longleftrightarrow k
$$

Asymptotics of the potentials

We recall that the constants $\kappa_{ \pm} \in \mathbb{R}^{\mp}$.

- Asymptotics of $a(x)$:

$$
a(x) \sim a_{ \pm} e^{\kappa_{ \pm} x}, x \rightarrow \pm \infty
$$

- Asymptotics of $c(x, k),(c(x, k)$ is a long range potential $)$

$$
c(x, k) \sim \frac{a E k+q Q r_{ \pm}}{r_{ \pm}^{2}+a^{2}}+c_{ \pm} e^{2 \kappa_{ \pm} x}, x \rightarrow \pm \infty
$$

- Asymptotics of $J(x,$.$) :$

$$
\sup _{\theta \in[0, \pi]}\left\|J(x, .)-I_{2}\right\|_{\infty}=O\left(e^{\kappa_{ \pm} x}\right), x \rightarrow \pm \infty
$$

Scattering theory

There are two usual and different ways to define the scattering matrix $S(\lambda)$ where $\lambda \in \mathbb{R}$ is the energy. Roughly speaking :

- The time-dependent approach:
- We define the time-dependent wave operators (in a two Hilbert settings here) and the scattering operator S.
- We diagonalize the "free Hamiltonian" with a unitary operator \mathcal{F} and define the scattering matrix $S(\lambda)=\mathcal{F} S \mathcal{F}^{*}, \lambda \in \mathbb{R}$.
- The stationary approach (discussed in this talk):
- We solve the stationary equation $H \psi=\lambda \psi$ using the separability of the Dirac equation.
- The system of angular ODEs permits to define generalized spherical harmonics and to decompose the full scattering matrix $S(\lambda)$ onto reduced scattering matrices $S_{k l}(\lambda)$.
- Some special solutions - called the Jost solutions - of the system of radial ODES encode the reduced scattering matrices $S_{k l}(\lambda)$.

Theorem

For KN-dS black holes, the above definitions are equivalent.

The stationary equation

$$
\begin{aligned}
H \psi=\lambda \psi & \Longleftrightarrow J^{-1}\left(H_{0}-\lambda J\right) \psi=0, \\
& \Longleftrightarrow\left[\Gamma^{1} D_{x}+c\left(x, D_{\varphi}\right)-\lambda+a(x)\left(H_{\mathbb{S}^{2}}-\lambda b(\theta) \Gamma^{3}\right)\right] \psi=0,
\end{aligned}
$$

with $\psi \in \mathcal{H}=L^{2}\left(\mathbb{R} \times \mathbb{S}^{2} ; \mathbb{C}^{2}\right)$.

Theorem

The operators D_{φ} and $A_{\mathbb{S}^{2}}(\lambda)=H_{\mathbb{S}^{2}}-\lambda b(\theta) \Gamma^{3}$ possess a common basis of eigenfunctions $Y_{k l}(\lambda) \in L^{2}\left(\mathbb{S}^{2}, \mathbb{C}^{2}\right)$:

$$
\begin{aligned}
A_{\mathbb{S}^{2}}(\lambda) Y_{k \mid}(\lambda) & =\mu_{k l}(\lambda) Y_{k l}(\lambda), \\
D_{\varphi} Y_{k l}(\lambda) & =k Y_{k 1}(\lambda) .
\end{aligned}
$$

The stationary equation

Also, we can write (separation of variables)

$$
\begin{gathered}
\mathcal{H}=\bigoplus_{(k, l) \in(1 / 2+\mathbb{Z}) \times \mathbb{N}^{*}} \mathcal{H}_{k l}(\lambda), \\
\mathcal{H}_{k l}(\lambda)=L^{2}\left(\mathbb{R} ; \mathbb{C}^{2}\right) \otimes Y_{k l}(\lambda) \simeq L^{2}\left(\mathbb{R}, \mathbb{C}^{2}\right),
\end{gathered}
$$

such that, if $\psi=\sum_{k, l} \psi_{k l}(x) \otimes Y_{k l}(\lambda)$, the stationary equation $H \psi=\lambda \psi$, is equivalent to the countable family of one-dimensional (radial) stationary equations

$$
H_{k l}(\lambda) \psi_{k l}(x)=\lambda \psi_{k l}(\lambda),
$$

where

$$
H_{k l}(\lambda)=\Gamma^{1} D_{x}+\mu_{k l}(\lambda) a(x) \Gamma^{2}+c(x, k) .
$$

We emphasize that $Y_{k l}(\lambda)$ and $\mu_{k l}(\lambda)$ depend on the parameters of the black hole we are looking for !

Reduction to the short range case.

$$
[\Gamma^{1} D_{x}+\mu_{k l}(\lambda) a(x) \Gamma^{2}+\underbrace{c(x, k)}_{\text {long-range }}] \psi=\lambda \psi,
$$

For $k \in 1 / 2+\mathbb{Z}$, we define the unitary operator

$$
U_{k}=e^{-i C(x, k) \Gamma^{1}}, \quad C(x, k)=\int_{-\infty}^{x}\left[c(s, k)-\Omega_{-}(k)\right] d s+\Omega_{-}(k) x
$$

where $\Omega_{ \pm}(k)=\frac{a E k+q Q r_{ \pm}}{r_{ \pm}^{2}+a^{2}}$. The spinor $\phi=U_{k}^{-1} \psi$ satisfies

$$
\left[\Gamma^{1} D_{x}+\mu_{k l}(\lambda) V_{k}(x)\right] \phi=\lambda \phi
$$

where

$$
V_{k}(x)=\left(\begin{array}{cc}
0 & a(x) e^{2 i C(x, k)} \\
a(x) e^{-2 i C(x, k)} & 0
\end{array}\right)
$$

Note that $V_{k}(x)$ now decays exponentially at both horizons $\{x= \pm \infty\}$.

The Jost functions

Set $z=-\mu_{k l}(\lambda) \in \mathbb{R}$. The stationary equation

$$
\left[\Gamma^{1} D_{x}-z V_{k}(x)\right] \phi=\lambda \phi
$$

possesses 2×2 matrix solutions $F_{L}(x, \lambda, z)$ and $F_{R}(x, \lambda, z)$ called Jost functions that have the asymptotics:

$$
\begin{aligned}
F_{L}(x, \lambda, k, z) & =e^{i \Gamma^{1} \lambda x}\left(I_{2}+o(1)\right), x \rightarrow+\infty \\
F_{R}(x, \lambda, k, z) & =e^{i \Gamma^{1} \lambda x}\left(I_{2}+o(1)\right), x \rightarrow-\infty
\end{aligned}
$$

- F_{L} and F_{R} are fundamental matrices of the stationary equation, i.e. $\operatorname{det} F_{L / R}=1$.
- $\exists A_{L}(\lambda, k, z)=\left[\begin{array}{ll}a_{L 1}(\lambda, k, z) & a_{L 2}(\lambda, k, z) \\ a_{L 3}(\lambda, k, z) & a_{L 4}(\lambda, k, z)\end{array}\right]$ such that

$$
F_{R}(x, \lambda, k, z)=F_{L}(x, \lambda, k, z) A_{L}(\lambda, k, z)
$$

Stationary representation of $S(\lambda)$

The matrix $A_{L}(\lambda, k, z)$ encodes the scattering properties associated to the stationary equation

$$
\left[\Gamma^{1} D_{x}-z V_{k}(x)\right] \phi=\lambda \phi
$$

We define the simplified and reduced scattering matrix by

$$
\hat{S}(\lambda, k, z)=\left[\begin{array}{ll}
\hat{T}(\lambda, k, z) & \hat{R}(\lambda, k, z) \\
\hat{L}(\lambda, k, z) & \hat{T}(\lambda, k, z)
\end{array}\right]
$$

where

$$
\begin{gathered}
\hat{T}(\lambda, k, z)=\frac{1}{a_{L 1}(\lambda, k, z)}, \quad \hat{R}(\lambda, k, z)=-\frac{a_{L 2}(\lambda, k, z)}{a_{L 1}(\lambda, k, z)} \\
\hat{L}(\lambda, k, z)=\frac{a_{L 3}(\lambda, k, z)}{a_{L 1}(\lambda, k, z)} .
\end{gathered}
$$

Stationary representation of $S(\lambda)$

The physical and global scattering matrix $S(\lambda)$ is given in terms of simplified and reduced scattering matrices by

$$
S(\lambda)=\oplus_{k, l} S_{k l}(\lambda)=\oplus_{k, l}\left[\begin{array}{ll}
T_{k l}(\lambda) & R_{k l}(\lambda) \\
L_{k l}(\lambda) & T_{k l}(\lambda)
\end{array}\right]
$$

where

$$
\begin{aligned}
T_{k l}(\lambda) & =e^{-i \beta(k)} \hat{T}\left(\lambda, k, \mu_{k l}(\lambda)\right) \\
R_{k l}(\lambda) & =e^{-2 i \beta(k)} \hat{R}\left(\lambda, k, \mu_{k l}(\lambda)\right), \\
L_{k l}(\lambda) & =\hat{L}\left(\lambda, k, \mu_{k l}(\lambda)\right),
\end{aligned}
$$

with

$$
\beta(k)=\int_{-\infty}^{0}\left[c(s, k)-\Omega_{-}(k)\right] d s+\int_{0}^{+\infty}\left[c(s, k)-\Omega_{+}(k)\right] d s .
$$

Scattering matrix : rearrangement

At this stage, we have constructed for all $\lambda \in \mathbb{R}$, the scattering matrix $S(\lambda)$ as a unitary operator on $L^{2}\left(\mathbb{S}^{2} ; \mathbb{C}^{2}\right)$.

Using the cylindrical symmetry and the matrix structure of the scattering matrix, $S(\lambda)$ can be expressed as

$$
S(\lambda)=\oplus_{k \in \frac{1}{2}+\mathbb{Z}} S_{k}(\lambda), \quad S_{k}(\lambda)=\left[\begin{array}{ll}
T_{k}^{L}(\lambda) & R_{k}(\lambda) \\
L_{k}(\lambda) & T_{k}^{R}(\lambda)
\end{array}\right],
$$

where $T_{k}^{L / R}(\lambda), R_{k}(\lambda)$ and $L_{k}(\lambda)$ act on $L^{2}((0, \pi), d \theta ; \mathbb{C})$ and correspond to the transmission and reflection operators of our scattering experiment.

We can state now the main uniqueness result of this work:

An inverse result at fixed energy

Theorem

Let $\left(M, Q^{2}, a, \Lambda\right)$ and $\left(\tilde{M}, \tilde{Q}^{2}, \tilde{a}, \tilde{\Lambda}\right)$ be the parameters of two a priori different $K N-d S$ black holes. Denote by $S(\lambda)$ and $\tilde{S}(\lambda)$ the corresponding scattering matrices at a fixed energy $\lambda \in \mathbb{R}$. Assume that one of the following equalities is fulfilled

$$
\begin{aligned}
R_{k}(\lambda) & =\tilde{R}_{k}(\lambda), \\
L_{k}(\lambda) & =\tilde{L}_{k}(\lambda),
\end{aligned}
$$

as operators on $\mathcal{L}=L^{2}((0, \pi) ; \mathbb{C})$ and for two different values of $k \in \frac{1}{2}+\mathbb{Z}$. Then the parameters of the two black holes coincide, i.e.

$$
M=\tilde{M}, a=\tilde{a}, Q^{2}=\tilde{Q}^{2}, \Lambda=\tilde{\Lambda}
$$

Comment: a more general result

We obtain more than only 4 parameters. Precisely,

Theorem

Under the same assumptions as in the previous Theorem, we recover in fact the function

$$
\frac{\lambda-c(x, k)}{a(x)}
$$

up to a diffeomorphism. Then, from the explicit forms of the potentials, we obtain $M=\tilde{M}, a=\tilde{a}, Q^{2}=\tilde{Q}^{2}, \Lambda=\tilde{\Lambda}$.
In the particular case $Q=0$ or if the scattering operators are known for two different energies $\lambda \in \mathbb{R}$, we get more precise results. Precisely, there exists a constant $\sigma \in \mathbb{R}$ such that

$$
\begin{aligned}
\tilde{a}(x) & =a(x-\sigma) \\
\tilde{c}(x, k) & =c(x-\sigma, k)
\end{aligned}
$$

Comment: possible extension

Consider the class of Lorentzian metrics

$$
g=T^{2}\left[\frac{W^{2}}{Z}(d t+m d \varphi)^{2}-\frac{Z}{W^{2}} d r^{2}-\frac{Z}{X^{2}} d \mu^{2}-\frac{X^{2}}{Z}(a d t+p d \varphi)^{2}\right]
$$

where

- $T^{2}=T^{2}(r, \mu)>0$.
- $W^{2}=W^{2}(r)>0, \quad X^{2}=X^{2}(\mu)>0$.
- $m=m(\mu), \quad p=p(r)$.
- $Z(r, \mu)=p(r)-\operatorname{am}(\mu), \quad a=$ constant,$\quad \mu=\cos (\theta)$.

Comment: possible extension

Consider the class of Lorentzian metrics

$$
g=T^{2}\left[\frac{W^{2}}{Z}(d t+m d \varphi)^{2}-\frac{Z}{W^{2}} d r^{2}-\frac{Z}{X^{2}} d \mu^{2}-\frac{X^{2}}{Z}(a d t+p d \varphi)^{2}\right]
$$

where

- $T^{2}=T^{2}(r, \mu)>0$.
- $W^{2}=W^{2}(r)>0, \quad X^{2}=X^{2}(\mu)>0$.
- $m=m(\mu), \quad p=p(r)$.
- $Z(r, \mu)=p(r)-\operatorname{am}(\mu), \quad a=$ constant,$\quad \mu=\cos (\theta)$.

These Lorentzian metrics are stationary axisymmetric and possess a pair of shearfree geodesic null congruences. Moreover, their geodesic flow is completely integrable.
(Carter 1968, Debever, Kamran, McLenaghan 1983) The wave equation is separable on (M, g). The Klein-Gordon equation is separable on (M, g) iff $T^{2}=1$.

Comment: possible extension

(Debever, Kamran, McLenaghan, 1984) If we assume additionally that (M, g) has type D in the Petrov classification, i.e. the one-form

$$
\omega=\frac{1}{4 Z}\left(m^{\prime}(\mu) d r+a p^{\prime}(r) d \mu\right)
$$

is closed, then the massless Dirac equation is separable on (M, g).

Comment: possible extension

(Debever, Kamran, McLenaghan, 1984) If we assume additionally that (M, g) has type D in the Petrov classification, i.e. the one-form

$$
\omega=\frac{1}{4 Z}\left(m^{\prime}(\mu) d r+a p^{\prime}(r) d \mu\right)
$$

is closed, then the massless Dirac equation is separable on (M, g).

- This condition implies that $m(\mu)$ and $p(r)$ must be polynomial of degree 2. For instance, $p(r)=r^{2}+a^{2}$ and $m(\mu)=a\left(1-\mu^{2}\right)$.
- We recover the family of Kerr-dS-TAUB-NUT spacetime by setting

$$
\begin{gathered}
m(\mu)=a\left(1-\mu^{2}\right)+2 l(1-\mu), \quad p(r)=r^{2}+(a+l)^{2}, \quad Z^{2}=r^{2}+(a \mu+l)^{2} \\
W^{2}=\left(a^{2}-I^{2}+e^{2}+g^{2}\right)-2 M r+r^{2}-\Lambda\left(\left(a^{2}-l^{2}\right) I^{2}+\left(\frac{a^{2}}{3}+2 l^{2}\right) r^{2}+\frac{r^{4}}{3}\right) \\
X^{2}=\left(1-\mu^{2}\right)\left(1+\frac{4}{3} \Lambda a l \mu+\frac{\Lambda}{3} a^{2} \mu^{2}\right) .
\end{gathered}
$$

Comment: possible extension

Under the assumptions:
(1) (Radial part) There exist $0<r_{-}<r_{+}<\infty$ such that

- for all $r_{-}<r<r_{+}, W^{2}(r)>0$,
- $W^{2}\left(r_{ \pm}\right)=0$ and $\left(W^{2}\right)^{\prime}\left(r_{ \pm}\right) \neq 0$,
- $W^{2} \in C^{2}$.
(2) (Angular part) The angular function $X(\mu)$ should be a small perturbation of
- $X \in C^{\infty}(0, B), X>0, X(0)=X(B)=0$,
- X has a unique non-degenerate maximum at $\mu_{0} \in(0, B)$.
(3) For all $r \in\left(r_{-}, r_{+}\right), \mu \in(0, B)$, we impose

$$
\frac{X(\mu)}{m(\mu)}>\frac{W(r)}{p(r)}
$$

The previous uniqueness results could be generalized to (M, g) (work in progress with Alexei lantchenko).

References

The Dirac equation $i \partial_{t} \psi=H \psi$ can be understood as an evolution equation on the manifold $\Sigma=\mathbb{R} \times \mathbb{S}^{2}$ having two different ends - the event $\{x=-\infty\}$ and cosmological $\{x=+\infty\}$ horizons - which are asymptotically hyperbolic.

- Joshi, Sa Barreto (Acta Math. [2000]): "asymptotics of the metric uniquely determined from the knowledge of $S(\lambda)$ (associated to the laplacian) at a fixed energy $\lambda \in \mathbb{R}^{+}$outside a discret set".
- Sa Barreto (Duke Math. J. [2005]): "metric uniquely determined from the knowledge of $S(\lambda)$ (associated to the laplacian) for all $\lambda \in \mathbb{R}^{+}$except on a discrete set of energies".
- Isozaki H., Kurylev J. (Mathematical Society of Japan Memoirs, 2014): "Introduction to spectral theory and inverse problem on asymptotically hyperbolic manifolds".

Main ideas of the proof.

Recall that $Y_{k l}=\left(Y_{k l}^{1}, Y_{k l}^{2}\right)$ are the eigenfunctions of the angular operator $A_{\mathbb{S}^{2}}(\lambda)$.

Proposition

The operators $R_{k}(\lambda) R_{k}(\lambda)^{*}$, (resp. $\left.R_{k}(\lambda)^{*} R_{k}(\lambda)\right)$, on $L^{2}((0, \pi))$ are diagonalizable on the Hilbert basis of eigenfunctions $\left(Y_{k l}^{1}\right)_{\mid \in \mathbb{N}^{*}}$, (resp. $\left.\left(Y_{k l}^{2}\right)_{l \in \mathbb{N}^{*}}\right)$, associated to the eigenvalues $\left|R_{k l}(\lambda)\right|^{2}$.
Moreover, the map $I \mapsto\left|R_{k l}(\lambda)\right|$ is strictly increasing for I large enough (technical point).

From the equality $R_{k}(\lambda)=\tilde{R}_{k}(\lambda)$, we can deduce that

$$
\exists L>0, \forall I \geq L, \quad R_{k l}(\lambda)=\tilde{R}_{k l}(\lambda), \quad Y_{k l}^{j}=\tilde{Y}_{k l}^{j}, j=1,2,
$$

up to multiplicative constants of modulus 1 .

Main ideas of the proof : the Frobenius method.

Proposition

Set $\zeta=\frac{\alpha^{2} \Lambda}{3}$. For all $\lambda \in \mathbb{R}$ and $(k, l) \in\left(\frac{1}{2}+\mathbb{N}\right) \times \mathbb{N}^{*}$, there exist constants $c_{k \mid}^{\lambda} \in \mathbb{C}$ such that when $\theta \rightarrow 0$

$$
\begin{aligned}
Y_{k l}(\theta, \varphi) & =c_{k k}^{\lambda} e^{i k \varphi}\left\{\binom{0}{1} \theta^{k}+\frac{i \mu_{k l}(\lambda)}{(2 k+1) \sqrt{1+\zeta}}\binom{1}{0} \theta^{k+1}\right. \\
& +\left[\frac{k}{6}+\frac{\zeta}{2(1+\zeta)}+\frac{\zeta k-a \lambda}{1+\zeta}-\frac{\mu_{k l}(\lambda)^{2}}{(2 k+1)(1+\zeta)}\right]\binom{0}{1} \frac{\theta^{k+2}}{2} \\
& \left.+O\left(\theta^{k+3}\right)\right\} .
\end{aligned}
$$

From $Y_{k \mid}^{j}=\tilde{Y}_{k \mid}^{j}, j=1,2$, and for two different k, we deduce that $a=\tilde{a}, \quad \Lambda=\tilde{\Lambda}$. In particular,

$$
\forall k \in \frac{1}{2}+\mathbb{Z}, \forall I \in \mathbb{N}^{*}, \quad \mu_{k l}(\lambda)=\tilde{\mu}_{k l}(\lambda) .
$$

Complexification of the angular momentum.

So, it remains to recover the mass M and the charge Q.

- We allow the physical angular momenta $\mu_{k l}(\lambda)$ to be complex. We set

$$
z=-\mu_{k l}(\lambda) .
$$

- The Jost functions $F_{L}(x, \lambda, k, z)$ and $F_{R}(x, \lambda, k, z)$ extend analytically to \mathbb{C} with respect to z.
- Similarly the scattering data $A_{L}(\lambda, k, z)$ extend analytically to \mathbb{C} with respect to z. Moreover, the entries of the matrix $A_{L}(\lambda, k, z)$ satisfy:

Lemma

$z \rightarrow a_{L j}(\lambda, k, z) \in H(\mathbb{C}), \quad\left|a_{L j}(\lambda, k, z)\right| \leq e^{A|R e z|}, \quad A=\int_{\mathbb{R}} a(x) d x$.

Nevanlinna class

Theorem (Nevanlinna class, Uniqueness)
A function f belongs to $N\left(\Pi^{+}\right)$, where $\Pi^{+}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$, if it is analytic on Π^{+}and if

$$
\sup _{0<r<1} \int_{-\pi}^{\pi} \ln ^{+}\left|f\left(\frac{1-r e^{i \varphi}}{1+r e^{i \varphi}}\right)\right| d \varphi<\infty
$$

where $\ln ^{+}(x)=\left\{\begin{array}{cc}\ln x, & \ln x \geq 0, \\ 0, & \ln x<0 .\end{array}\right.$
If $f \in N\left(\Pi^{+}\right)$satisfies $f\left(\alpha_{l}\right)=0$ with $\sum_{l=0}^{+\infty} \frac{1}{\alpha_{l}}=\infty$, then $f \equiv 0$ in \mathbb{C}.

Application

Proposition

The scattering data $a_{L j}(\lambda, k, z) \in N\left(\Pi^{+}\right)$.

Corollary

Under our main assumption, we have (up to multiplicative constants of modulus 1)

$$
a_{L j}\left(\lambda, k, \mu_{k l}(\lambda)\right)=\tilde{a}_{L j}\left(\lambda, k, \tilde{\mu}_{k l}(\lambda)\right), \forall I \in \mathbb{N}^{*}
$$

Since $\mu_{k l}(\lambda)=\tilde{\mu}_{k l}(\lambda)$ and $\sum_{l=0}^{\infty} \frac{1}{\mu_{k l}(\lambda)}=\infty$, we get

$$
a_{L j}(\lambda, k, z)=\tilde{a}_{L j}(\lambda, k, z), \forall z \in \mathbb{C}
$$

(up to multiplicative constants of modulus 1)

An inverse result at localized energy

Corollary

Assume that $R_{k}(\lambda)=\tilde{R}_{k}(\lambda)$ for all λ in an open interval I. Then the potentials $a(x)$ and $c(x, k)$ are uniquely determined.

Proof: From the assumption, we can show for instance that

$$
a_{L 2}(\lambda, k, z)=\alpha \tilde{a}_{L 2}(\lambda, k, z), \quad \forall z \in \mathbb{C}, \forall \lambda \in I,
$$

where $|\alpha|=1$. This implies that

$$
\hat{q}(., k)(2 \lambda)=\alpha \hat{\tilde{q}}(., k)(2 \lambda), \quad \forall \lambda \in I,
$$

where $q(x, k)=e^{2 i C(x, k)} a(x)$ is exponentially decreasing on \mathbb{R}. Hence

$$
\hat{q}(., k)(2 \lambda)=\alpha \hat{\tilde{q}}(., k)(2 \lambda), \quad \forall \lambda \in \mathbb{R},
$$

and therefore

$$
q(x, k)=\alpha \tilde{q}(x), \quad \forall x \in \mathbb{R}
$$

An inverse result at localized energy

Taking the logarithmic derivative with respect to x, we obtain,

$$
\frac{a^{\prime}(x)}{a(x)}+2 i c(x, k)=\frac{\tilde{a}^{\prime}(x)}{\tilde{a}(x)}+2 i \tilde{c}(x, k) .
$$

Thus, taking the real and imaginary parts of this equality, we have

$$
a(x)=\tilde{a}(x), \quad c(x, k)=\tilde{c}(x, k)
$$

End of the proof of the inverse problem at fixed energy

"Up to a Liouville transformation in the variable x ", we define the 2×2 matrix-valued function $P(x, \lambda, k, z)$ by

$$
P(x, \lambda, k, z) \tilde{F_{R}}(x, \lambda, k, z)=F_{R}(x, \lambda, k, z)
$$

Question: What can we say about $P(x, \lambda, k, z)$?

- By inverting $\tilde{F_{R}}$, $\left(\operatorname{det}\left(\tilde{F_{R}}\right)=1\right), z \longrightarrow P_{j}(x, \lambda, k, z)$ belong to $H(\mathbb{C})$, are of exponential type and are bounded on $i \mathbb{R}$.
- We calculate the asymptotics of $a_{L j}(\lambda, k, z), z \rightarrow+\infty$.
- Algebraic manipulations + uniqueness of the $a_{L j}(\lambda, k, z)$, we can show that $z \longrightarrow P_{j}(x, \lambda, k, z)$ are also bounded on \mathbb{R}.
- Phragmen-Lindelöf Thm: $z \longrightarrow P_{j}(x, \lambda, k, z)$ are bounded on \mathbb{C}.

End of the proof

- Liouville Thm: $P_{j}(x, \lambda, k, z)=P_{j}(x, \lambda, k, 0)$ for all $z \in \mathbb{C}$.
- We calculate explicitly $P_{j}(x, \lambda, k, 0)$.
- Putting this last result in

$$
P(x, \lambda, k, 0) \tilde{F_{R}}(x, \lambda, k, z)=F_{R}(x, \lambda, k, z)
$$

we find a simple link between $\tilde{F_{R}}(x, \lambda, k, z)$ and $F_{R}(x, \lambda, k, z)$.

- Thus, we can recover (up to a diffeomorphism due to the Liouville transformation) the function

$$
\frac{\lambda-c(x, k)}{a(x)}
$$

- From the explicit forms of the potentials : uniqueness of the parameters of the black hole.

