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Outline of the talk

Kerr-Newman-de-Sitter black holes (rotating black holes):

I Spacetime (M, g) with g Lorentzian metric.
I g completely characterized by M > 0 (mass), Q ∈ R (electric charge),

a ∈ R∗ (angular momentum per unit mass) and Λ > 0 (cosmological
constant).

”Can we determine g by observing waves at infinities?”

Massless Dirac fields in KN-dS black holes:
I Dirac waves: i∂tu = Du, D Dirac operator.
I Scattering matrix Sg (λ), λ a fixed energy.

Main result:
I g −→ Sg (λ) is one-to-one for a fixed energy λ ∈ R.
I Actually, our result is better.



Kerr-Newman-de-Sitter Black Holes

Spacetime (M, g):

M = Rt × Σ, Σ =]r−, r+[r×S2
θ,ϕ,

equipped with a Lorentzian metric

g =
∆r −∆θa

2 sin2 θ

ρ2
dt2 − 2a sin2 θ

Eρ2
(∆r −∆θa

2 sin2 θ)dtdϕ

− ρ
2

∆r
dr2 − ρ2

∆θ
dθ2 − sin2 θ

E 2ρ2

(
∆θ(r2 + a2)2 −∆ra

2 sin2 θ
)
dϕ2.

where

ρ2 = r2 + a2 cos2 θ, E = 1 +
a2Λ

3
> 0, ∆θ = 1 +

a2Λ cos2 θ

3
> 0,

∆r = (r2 + a2)(1− Λr2

3
)− 2Mr + Q2,



The event and cosmological horizons

Singularities: ∆r possesses 4 roots: rn < 0 < rc < r− < r+ if

(1) a2Λ
3 ≤ 7− 4

√
3,

(2) M−crit < M < M+
crit ,

with

M±crit =
1√
18Λ

((
1− a2Λ

3

)
±
√(
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3

)2
− 4Λ(a2 + Q2)

)2

(
2
(
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3

)2
∓
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3

)2
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)
.

Cosmological and event horizons: {r = r±}

∆r > 0 in {r− < r < r+}



Properties of KN-dS black holes

Symmetries:
I Cylindrical symmetry (∂ϕ Killing vector field).
I Time-translation (∂t Killing vector field).

Nullcones: ∂r , ∂θ, ∂ϕ everywhere spacelike in M.
∂t everywhere timelike except on the two ergospheres

E± = {(r , θ) ∈M, ∆r −∆θa
2 sin2 θ < 0},

where it becomes spacelike.

Lack of stationarity: there exists no globally defined timelike Killing
vector field on M.



Properties of Kerr-Newman-de-Sitter black holes

stationary observers: observers living on the worldlines

r = const, θ = const, ϕ = ωt + const,

with ω = const. For such observers, if r− << r << r+, then the
variable t corresponds to their proper time.

Principal null geodesics: the spacetime M is foliated by the two
families of incoming and outgoing principal null geodesics generated
by

V± =
r2 + a2

∆r

(
∂t +

aE

r2 + a2
∂ϕ

)
± ∂r .

The principal null geodesics do not reach {r = r±} in a finite time t!
The horizons are perceived as asymptotic regions by stationary
observers.



A new radial variable

Tortoise radial variable: {r = r±} ↔ {x = ±∞}.

dx
dr = r2+a2

∆r

x =
1

2κ−
ln(r−r−)+

1

2κ+
ln(r+−r)+

1

2κc
ln(r−rc)+

1

2κn
ln(r−rn)+ c ,

I c is any constant of integration.
I κj =

∆′
r (rj )

2(r2
j +a2)

, j = −,+, c , n.

New framework: B = Rt × Rx × S2
θ,ϕ,

g =
∆r

ρ2

[
dt − a sin2 θ

E
dϕ
]2
− ρ2∆r

(r2 + a2)2
dx2 − ρ2

∆θ
dθ2

−∆θ sin2 θ

ρ2

[
a dt − r2 + a2

E
dϕ
]2
.



Massless Dirac fields in KN-dS black holes
Dirac fields: ψ ∈ H = L2(R× S2, dxdθdϕ; C2) and satisfies

i∂tψ = Hψ,

where
H = J−1H0, H0 = Γ1Dx + a(x)HS2 + c(x ,Dϕ)

Dx = −i∂x , Dθ = −i∂θ, Dϕ = −i∂ϕ.

Angular Dirac operator:

HS2 =
√

∆θ

[
Γ2Dθ + Γ2 iΛa

2 sin(2θ)

12∆θ
+

Γ3

sin θ
Dϕ + Γ3 Λa2 sin(θ)

3∆θ
Dϕ

]
.

Dirac matrices: ΓiΓj + ΓjΓi = 2δij I2, ∀i , j = 1, 2, 3.

Γ1 =

(
1 0
0 −1

)
, Γ2 =

(
0 1
1 0

)
, Γ3 =

(
0 i
−i 0

)
.



Massless Dirac fields in KN-dS black holes

Dirac equation:

i∂tψ = Hψ, H = J−1H0, H0 = Γ1Dx + a(x)HS2 + c(x ,Dϕ).

Potentials:

a(x) =

√
∆r

r2 + a2
, c(x ,Dϕ) =

aE

r2 + a2
Dϕ +

qQr

r2 + a2
.

J = I2 + a(x)b(θ)Γ3, b(θ) =
a sin θ√

∆θ
,

J−1 = (1− a(x)2b(θ)2)(I2 − a(x)b(θ)Γ3).

Cylindrical symmetry: The equation is simplified by decomposing it
onto the angular modes {e ikϕ}, k ∈ 1

2 + Z.

Dϕ ←→ k .



Asymptotics of the potentials

We recall that the constants κ± ∈ R∓.

Asymptotics of a(x) :

a(x) ∼ a±e
κ±x , x → ±∞.

Asymptotics of c(x , k), (c(x , k) is a long range potential)

c(x , k) ∼ aEk + qQr±
r2
± + a2

+ c±e
2κ±x , x → ±∞,

Asymptotics of J(x , .):

sup
θ∈[0,π]

‖J(x , .)− I2‖∞ = O (eκ±x) , x → ±∞.



Scattering theory
There are two usual and different ways to define the scattering matrix
S(λ) where λ ∈ R is the energy. Roughly speaking :

The time-dependent approach:
I We define the time-dependent wave operators (in a two Hilbert

settings here) and the scattering operator S .
I We diagonalize the ”free Hamiltonian” with a unitary operator F and

define the scattering matrix S(λ) = FSF∗, λ ∈ R.

The stationary approach (discussed in this talk):
I We solve the stationary equation Hψ = λψ using the separability of

the Dirac equation.
I The system of angular ODEs permits to define generalized spherical

harmonics and to decompose the full scattering matrix S(λ) onto
reduced scattering matrices Skl(λ).

I Some special solutions - called the Jost solutions - of the system of
radial ODES encode the reduced scattering matrices Skl(λ).

Theorem

For KN-dS black holes, the above definitions are equivalent.



The stationary equation

Hψ = λψ ⇐⇒ J−1(H0 − λJ)ψ = 0,

⇐⇒
[
Γ1Dx + c(x ,Dϕ)− λ+ a(x)(HS2 − λb(θ)Γ3)

]
ψ = 0,

with ψ ∈ H = L2(R× S2;C2).

Theorem

The operators Dϕ and AS2(λ) = HS2 − λb(θ)Γ3 possess a common basis of
eigenfunctions Ykl(λ) ∈ L2(S2,C2):

AS2(λ)Ykl(λ) = µkl(λ)Ykl(λ),

DϕYkl(λ) = kYkl(λ).



The stationary equation
Also, we can write (separation of variables)

H =
⊕

(k,l)∈(1/2+Z)×N∗

Hkl(λ),

Hkl(λ) = L2(R;C2)⊗ Ykl(λ) ' L2(R,C2),

such that, if ψ =
∑

k,l ψkl(x)⊗ Ykl(λ) , the stationary equation
Hψ = λψ, is equivalent to the countable family of one-dimensional
(radial) stationary equations

Hkl(λ)ψkl(x) = λψkl(λ),

where
Hkl(λ) = Γ1Dx + µkl(λ)a(x)Γ2 + c(x , k).

We emphasize that Ykl(λ) and µkl(λ) depend on the parameters of the
black hole we are looking for !



Reduction to the short range case.Γ1Dx + µkl(λ)a(x)Γ2 + c(x , k)︸ ︷︷ ︸
long-range

ψ = λψ,

For k ∈ 1/2 + Z, we define the unitary operator

Uk = e−iC(x ,k)Γ1
, C (x , k) =

∫ x

−∞
[c(s, k)− Ω−(k)]ds + Ω−(k)x ,

where Ω±(k) = aEk+qQr±
r2
±+a2 . The spinor φ = U−1

k ψ satisfies[
Γ1Dx + µkl(λ)Vk(x)

]
φ = λφ,

where

Vk(x) =

(
0 a(x)e2iC(x ,k)

a(x)e−2iC(x ,k) 0

)
.

Note that Vk(x) now decays exponentially at both horizons {x = ±∞}.



The Jost functions
Set z = −µkl(λ) ∈ R. The stationary equation[

Γ1Dx − zVk(x)
]
φ = λφ,

possesses 2× 2 matrix solutions FL(x , λ, z) and FR(x , λ, z) called Jost
functions that have the asymptotics:

FL(x , λ, k , z) = e iΓ
1λx(I2 + o(1)), x → +∞,

FR(x , λ, k , z) = e iΓ
1λx(I2 + o(1)), x → −∞.

FL and FR are fundamental matrices of the stationary equation, i.e.
detFL/R = 1.

∃ AL(λ, k, z) =

[
aL1(λ, k, z) aL2(λ, k , z)
aL3(λ, k, z) aL4(λ, k , z)

]
such that

FR(x , λ, k , z) = FL(x , λ, k , z)AL(λ, k , z).



Stationary representation of S(λ)

The matrix AL(λ, k , z) encodes the scattering properties associated to the
stationary equation [

Γ1Dx − zVk(x)
]
φ = λφ.

We define the simplified and reduced scattering matrix by

Ŝ(λ, k , z) =

[
T̂ (λ, k, z) R̂(λ, k , z)

L̂(λ, k, z) T̂ (λ, k, z)

]
,

where

T̂ (λ, k , z) =
1

aL1(λ, k , z)
, R̂(λ, k, z) = −aL2(λ, k , z)

aL1(λ, k , z)
,

L̂(λ, k , z) =
aL3(λ, k , z)

aL1(λ, k , z)
.



Stationary representation of S(λ)

The physical and global scattering matrix S(λ) is given in terms of
simplified and reduced scattering matrices by

S(λ) = ⊕k,lSkl(λ) = ⊕k,l

[
Tkl(λ) Rkl(λ)
Lkl(λ) Tkl(λ)

]
,

where

Tkl(λ) = e−iβ(k)T̂ (λ, k , µkl(λ)),

Rkl(λ) = e−2iβ(k)R̂(λ, k , µkl(λ)),

Lkl(λ) = L̂(λ, k , µkl(λ)),

with

β(k) =

∫ 0

−∞
[c(s, k)− Ω−(k)] ds +

∫ +∞

0
[c(s, k)− Ω+(k)] ds.



Scattering matrix : rearrangement

At this stage, we have constructed for all λ ∈ R, the scattering matrix
S(λ) as a unitary operator on L2(S2;C2).

Using the cylindrical symmetry and the matrix structure of the scattering
matrix, S(λ) can be expressed as

S(λ) = ⊕k∈ 1
2

+ZSk(λ), Sk(λ) =

[
T L
k (λ) Rk(λ)

Lk(λ) TR
k (λ)

]
,

where T
L/R
k (λ),Rk(λ) and Lk(λ) act on L2((0, π), dθ;C) and correspond

to the transmission and reflection operators of our scattering experiment.

We can state now the main uniqueness result of this work :



An inverse result at fixed energy

Theorem

Let (M,Q2, a,Λ) and (M̃, Q̃2, ã, Λ̃) be the parameters of two a priori
different KN-dS black holes. Denote by S(λ) and S̃(λ) the corresponding
scattering matrices at a fixed energy λ ∈ R. Assume that one of the
following equalities is fulfilled

Rk(λ) = R̃k(λ),

Lk(λ) = L̃k(λ),

as operators on L = L2((0, π);C) and for two different values of
k ∈ 1

2 + Z. Then the parameters of the two black holes coincide, i.e.

M = M̃, a = ã, Q2 = Q̃2, Λ = Λ̃.



Comment: a more general result

We obtain more than only 4 parameters. Precisely,

Theorem

Under the same assumptions as in the previous Theorem, we recover in
fact the function

λ− c(x , k)

a(x)
,

up to a diffeomorphism. Then, from the explicit forms of the potentials,
we obtain M = M̃, a = ã, Q2 = Q̃2, Λ = Λ̃.

In the particular case Q = 0 or if the scattering operators are known for
two different energies λ ∈ R, we get more precise results. Precisely, there
exists a constant σ ∈ R such that

ã(x) = a(x − σ),

c̃(x , k) = c(x − σ, k).



Comment: possible extension
Consider the class of Lorentzian metrics

g = T 2

[
W 2

Z
(dt + mdϕ)2 − Z

W 2
dr2 − Z

X 2
dµ2 − X 2

Z
(adt + pdϕ)2

]
,

where

T 2 = T 2(r , µ) > 0.

W 2 = W 2(r) > 0, X 2 = X 2(µ) > 0.

m = m(µ), p = p(r).

Z (r , µ) = p(r)− am(µ), a = constant, µ = cos(θ).

These Lorentzian metrics are stationary axisymmetric and possess a pair of
shearfree geodesic null congruences. Moreover, their geodesic flow is
completely integrable.
(Carter 1968, Debever, Kamran, McLenaghan 1983) The wave equation is
separable on (M, g). The Klein-Gordon equation is separable on (M, g) iff
T 2 = 1.
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Comment: possible extension
(Debever, Kamran, McLenaghan, 1984) If we assume additionally that
(M, g) has type D in the Petrov classification, i.e. the one-form

ω =
1

4Z
(m′(µ)dr + ap′(r)dµ),

is closed, then the massless Dirac equation is separable on (M, g).

This condition implies that m(µ) and p(r) must be polynomial of
degree 2. For instance, p(r) = r2 + a2 and m(µ) = a(1− µ2).

We recover the family of Kerr-dS-TAUB-NUT spacetime by setting

m(µ) = a(1−µ2)+2l(1−µ), p(r) = r2+(a+l)2, Z 2 = r2+(aµ+l)2,

W 2 = (a2−l2+e2+g2)−2Mr+r2−Λ

(
(a2 − l2)l2 + (

a2

3
+ 2l2)r2 +

r4

3

)
,

X 2 = (1− µ2)

(
1 +

4

3
Λalµ+

Λ

3
a2µ2

)
.
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3
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.



Comment: possible extension
Under the assumptions:
(1) (Radial part) There exist 0 < r− < r+ <∞ such that

for all r− < r < r+, W 2(r) > 0,

W 2(r±) = 0 and (W 2)′(r±) 6= 0,

W 2 ∈ C 2.

(2) (Angular part) The angular function X (µ) should be a small
perturbation of

X ∈ C∞(0,B), X > 0, X (0) = X (B) = 0,

X has a unique non-degenerate maximum at µ0 ∈ (0,B).

(3) For all r ∈ (r−, r+), µ ∈ (0,B), we impose

X (µ)

m(µ)
>

W (r)

p(r)
.

The previous uniqueness results could be generalized to (M, g) (work in
progress with Alexei Iantchenko).
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Main ideas of the proof.

Recall that Ykl = (Y 1
kl ,Y

2
kl) are the eigenfunctions of the angular operator

AS2(λ).

Proposition

The operators Rk(λ)Rk(λ)∗, (resp. Rk(λ)∗Rk(λ)), on L2((0, π)) are
diagonalizable on the Hilbert basis of eigenfunctions (Y 1

kl)l∈N∗ , (resp.
(Y 2

kl)l∈N∗), associated to the eigenvalues |Rkl(λ)|2.
Moreover, the map l 7→ |Rkl(λ)| is strictly increasing for l large enough
(technical point).

From the equality Rk(λ) = R̃k(λ), we can deduce that

∃L > 0, ∀l ≥ L, Rkl(λ) = R̃kl(λ), Y j
kl = Ỹ j

kl , j = 1, 2,

up to multiplicative constants of modulus 1.



Main ideas of the proof : the Frobenius method.

Proposition

Set ζ = a2Λ
3 . For all λ ∈ R and (k , l) ∈ ( 1

2 + N)× N∗, there exist
constants cλkl ∈ C such that when θ → 0

Ykl(θ, ϕ) = cλkle
ikϕ

{(
0
1

)
θk +

iµkl(λ)

(2k + 1)
√

1 + ζ

(
1
0

)
θk+1

+

[
k

6
+

ζ

2(1 + ζ)
+
ζk − aλ

1 + ζ
− µkl(λ)2

(2k + 1)(1 + ζ)

](
0
1

)
θk+2

2

+ O(θk+3)

}
.

From Y j
kl = Ỹ j

kl , j = 1, 2, and for two different k, we deduce that

a = ã, Λ = Λ̃. In particular,

∀k ∈ 1

2
+ Z, ∀l ∈ N∗, µkl(λ) = µ̃kl(λ).



Complexification of the angular momentum.

So, it remains to recover the mass M and the charge Q.

We allow the physical angular momenta µkl(λ) to be complex. We set

z = −µkl(λ).

The Jost functions FL(x , λ, k , z) and FR(x , λ, k , z) extend analytically
to C with respect to z .

Similarly the scattering data AL(λ, k, z) extend analytically to C with
respect to z . Moreover, the entries of the matrix AL(λ, k , z) satisfy:

Lemma

z → aLj(λ, k , z) ∈ H(C), |aLj(λ, k , z)| ≤ eA|Rez|, A =
∫
R a(x)dx.



Nevanlinna class

Theorem (Nevanlinna class, Uniqueness)

A function f belongs to N(Π+), where Π+ = {z ∈ C : Re(z) > 0}, if it is
analytic on Π+ and if

sup
0<r<1

∫ π

−π
ln+
∣∣∣f (1− re iϕ

1 + re iϕ

)∣∣∣dϕ <∞,
where ln+(x) =

{
ln x , ln x ≥ 0,

0, ln x < 0.

If f ∈ N(Π+) satisfies f (αl) = 0 with
+∞∑
l=0

1

αl
=∞, then f ≡ 0 in C.



Application

Proposition

The scattering data aLj(λ, k, z) ∈ N(Π+).

Corollary

Under our main assumption, we have (up to multiplicative constants of
modulus 1)

aLj(λ, k , µkl(λ)) = ãLj(λ, k , µ̃kl(λ)),∀l ∈ N∗.

Since µkl(λ) = µ̃kl(λ) and
∞∑
l=0

1

µkl(λ)
=∞, we get

aLj(λ, k, z) = ãLj(λ, k , z),∀z ∈ C,

(up to multiplicative constants of modulus 1)



An inverse result at localized energy

Corollary

Assume that Rk(λ) = R̃k(λ) for all λ in an open interval I . Then the
potentials a(x) and c(x , k) are uniquely determined.

Proof: From the assumption, we can show for instance that

aL2(λ, k, z) = αãL2(λ, k , z), ∀z ∈ C, ∀λ ∈ I ,

where |α| = 1. This implies that

q̂(., k)(2λ) = αˆ̃q(., k)(2λ), ∀λ ∈ I ,

where q(x , k) = e2iC(x ,k)a(x) is exponentially decreasing on R. Hence

q̂(., k)(2λ) = αˆ̃q(., k)(2λ), ∀λ ∈ R,

and therefore
q(x , k) = αq̃(x), ∀x ∈ R.



An inverse result at localized energy

Taking the logarithmic derivative with respect to x , we obtain,

a′(x)

a(x)
+ 2ic(x , k) =

ã′(x)

ã(x)
+ 2i c̃(x , k).

Thus, taking the real and imaginary parts of this equality, we have

a(x) = ã(x), c(x , k) = c̃(x , k).



End of the proof of the inverse problem at fixed energy

”Up to a Liouville transformation in the variable x”, we define the 2× 2
matrix-valued function P(x , λ, k , z) by

P(x , λ, k, z)F̃R(x , λ, k , z) = FR(x , λ, k, z).

Question : What can we say about P(x , λ, k, z) ?

By inverting F̃R , (det (F̃R) = 1), z −→ Pj(x , λ, k , z) belong to H(C),
are of exponential type and are bounded on iR.

We calculate the asymptotics of aLj(λ, k, z), z → +∞.
Algebraic manipulations + uniqueness of the aLj(λ, k , z), we can
show that z −→ Pj(x , λ, k , z) are also bounded on R.

Phragmen-Lindelöf Thm: z −→ Pj(x , λ, k , z) are bounded on C.



End of the proof

Liouville Thm: Pj(x , λ, k, z) = Pj(x , λ, k, 0) for all z ∈ C.

We calculate explicitly Pj(x , λ, k, 0).

Putting this last result in

P(x , λ, k , 0)F̃R(x , λ, k , z) = FR(x , λ, k, z).

we find a simple link between F̃R(x , λ, k , z) and FR(x , λ, k , z).

Thus, we can recover (up to a diffeomorphism due to the Liouville
transformation) the function

λ− c(x , k)

a(x)
,

From the explicit forms of the potentials : uniqueness of the
parameters of the black hole.


