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Outline of the talk

o Kerr-Newman-de-Sitter black holes (rotating black holes):

» Spacetime (M, g) with g Lorentzian metric.

» g completely characterized by M > 0 (mass), Q € R (electric charge),
a € R* (angular momentum per unit mass) and A > 0 (cosmological
constant).

"Can we determine g by observing waves at infinities?”

@ Massless Dirac fields in KN-dS black holes:
» Dirac waves: iQ;u = Du, D Dirac operator.
» Scattering matrix Sg(\), A a fixed energy.

@ Main result:
» g — Sg() is one-to-one for a fixed energy A € R.
» Actually, our result is better.



Kerr-Newman-de-Sitter Black Holes
@ Spacetime (M, g):
M=Rex L, T=]rrxSj,,
equipped with a Lorentzian metric

A, — DNga®sin® 6 2 2asin’ 0

= dt? — A, — Nga®sin 0)dtd
g 2 E (A, ga”sin- 6)dtdy
P2 2 P 2 sin” 6 2 212 2 2 2
_Edr Agd& £, (Dg(r® + a%)° — Ara®sin®6) dy
where
2/\ 2/\ 2
p? = r?+ a%cos? ), E_1+T>O A9:1+L3050>0,

A= (rP+a4)(1 - —)—2I\/Ir+02



The event and cosmological horizons

@ Singularities: A, possesses 4 roots: r, <0 < ro < r_ < ry if

(1) A <743
(2) M_, <M< M

crit crit?
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e Cosmological and event horizons: {r =ry}
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Properties of KN-dS black holes

@ Symmetries:

» Cylindrical symmetry (9,, Killing vector field).
» Time-translation (9; Killing vector field).

@ Nullcones: 0,, 09,0, everywhere spacelike in M.
0 everywhere timelike except on the two ergospheres

EF ={(r,0) € M, A, — Nga®sin*0 < 0},

where it becomes spacelike.

@ Lack of stationarity: there exists no globally defined timelike Killing
vector field on M.



Properties of Kerr-Newman-de-Sitter black holes

@ stationary observers: observers living on the worldlines
r = const, 6 = const, p = wt + const,

with w = const. For such observers, if r_ << r << ry, then the
variable t corresponds to their proper time.

@ Principal null geodesics: the spacetime M is foliated by the two
families of incoming and outgoing principal null geodesics generated

by
2 2
+ a aE
vt =" + +0,.
: <at > 32@0) )

The principal null geodesics do not reach {r = ry.} in a finite time t!
The horizons are perceived as asymptotic regions by stationary
observers.



A new radial variable

@ Tortoise radial variable: {r=ry} < {x=xo0}.
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Massless Dirac fields in KN-dS black holes
Dirac fields: 1 € H = L?(R x S?, dxdfdp; C?) and satisfies

IatQ/) = H’l,b,
where

H = J Hy, Ho = Dy + a(x)Hs> + ¢(x, D)

o D, = —idy, Dy = —idy, D, = —id,.

@ Angular Dirac operator:

'Aa? sin(2 r3 A& si
Her = \/A—Q[IQDB_H_zlAa sin(26) n p, 4+ r3M2 sm(9)D¢]
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o Dirac matrices: [TV + I =25;h, Vi, j=1,2,3.
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Massless Dirac fields in KN-dS black holes

@ Dirac equation:
i0¢t) = HY, H= J 1Hy, Ho = M Dy + a(x)Hs + c(x, D).

@ Potentials:

VA, aE qQr
a(X) = r2_|_a27 C(Xa DSO) = r2+32D89+ r2+a2‘
asinf
J=1 b3, b)) = ,
2+3(X) ( ) ( ) m

J7 = (1= a(x)?b(0)?)( — a(x)b(6)3).

@ Cylindrical symmetry: The equation is simplified by decomposing it
onto the angular modes {e¢}, k € 3 + Z.

D, «— k.



Asymptotics of the potentials

We recall that the constants k4 € RT.
e Asymptotics of a(x) :
a(x) ~ ape*, x — +o0.
e Asymptotics of c(x, k), (c(x, k) is a long range potential)

BEk+qQre | i

c(x, k) ~ 71 +cre , X — Fo0,

e Asymptotics of J(x,.):

sup ||[J(x,.) — ko = O ("), x — £o0.
0€[0,n]



Scattering theory

There are two usual and different ways to define the scattering matrix
S(\) where A € R is the energy. Roughly speaking :

@ The time-dependent approach:
» We define the time-dependent wave operators (in a two Hilbert
settings here) and the scattering operator S.
» We diagonalize the "free Hamiltonian” with a unitary operator F and
define the scattering matrix S(\) = FSF*, A € R.

@ The stationary approach (discussed in this talk):

» We solve the stationary equation Hi = A\ using the separability of
the Dirac equation.

> The system of angular ODEs permits to define generalized spherical
harmonics and to decompose the full scattering matrix S(\) onto
reduced scattering matrices S;(A).

» Some special solutions - called the Jost solutions - of the system of
radial ODES encode the reduced scattering matrices Sg()).

Theorem
For KN-dS black holes, the above definitions are equivalent.




The stationary equation

Hyp = p <= J Y Ho— \J)y =0,
= [MDx+c(x,D5) — A+ a(x)(Hgz — Ab(0)?)] v =0,
with ¢ € H = L?(R x S?; C?).

Theorem

The operators D, and Ag2()\) = Hs2 — Ab(0)® possess a common basis of
eigenfunctions Yy ()\) € L2(S?,C?):

A (N)Y(A) = p(N) Yi(N),
D@Yk/(/\) = kYu()N).




The stationary equation
Also, we can write (separation of variables)

H = &y Hia(N),
(k,))e(1/2+7Z) xN*

Hia(N) = LP(R;C?) @ Y(A) ~ L2(R,C?),

such that, if ¥ =3, ¥u(x) ® Yi(A) , the stationary equation
Hvw = A\, is equivalent to the countable family of one-dimensional
(radial) stationary equations

Hig(N)Yri(x) = Xbg(A),

where
Hi(A) = T Dy + pr(X)a(x) + ¢(x, k).

We emphasize that Yj;()) and () depend on the parameters of the
black hole we are looking for !



Reduction to the short range case.

MDD+ (N a(x)r? + c(x, k) | ¢ = Mp,
——

long-range

For k € 1/2 + 7Z, we define the unitary operator

U = e CRM T C(x, k) = / ) [c(s, k) — Q_(k)]ds + Q_(k)x,

—00

where Q4 (k) = %. The spinor ¢ = U;1¢ satisfies

[T Dy + puia(N) Vi(x)] ¢ = Ao,

0 2(x)e2iC(x,K)
Vi(x) = < a(X)e_2iC(x’k) () 0 >

Note that Vj(x) now decays exponentially at both horizons {x = +c0}.

where



The Jost functions
Set z = —py(N\) € R. The stationary equation

[MDy — 2Vi(x)] ¢ = Ao,

possesses 2 x 2 matrix solutions Fi(x, A, z) and Fr(x, A, z) called Jost
functions that have the asymptotics:

Fiix, Mk, z) = e+ o(1)), x — +00,
Fr(x, A k,z) = T ™(h+o(1)), x > —c.

@ F; and Fg are fundamental matrices of the stationary equation, i.e.
det FL/R =1.

ar1(\ k, z) (

. aro )‘7
°© FA(N K 2) = a3(A k, z) ara(N,

k,2) such that
k,z

)
Fr(x, A\, k,z) = Fr(x, A, k, 2)AL(\ k, 2).



Stationary representation of S(\)

The matrix AL (A, k, z) encodes the scattering properties associated to the
stationary equation

[MDx = 2Vi(x)] & = Ao

We define the simplified and reduced scattering matrix by

A [T\ k,2) R\ kK, 2)
Sk 2) = [(\k,z) TOkz) |’
where
1 aLz(/\, k, Z)
()\7 72) a[_]_()\, k Z) (>\7 ? ) aL]_(A, k,Z)



Stationary representation of S(\)

The physical and global scattering matrix S(A) is given in terms of
simplified and reduced scattering matrices by

)= s =su| 1) T |

where
Tu(\) = e PRTO L ma(N),
Ru(N) = e ZPRIR(N, K, ua(N),
Lk/()‘) = Z()‘vknuk/()‘))y

with

0 +o0
B(k) = / [c(s, k) — Q_(K)] ds + /0 [c(s, k) — Q4 (K)] d.



Scattering matrix : rearrangement
At this stage, we have constructed for all A € R, the scattering matrix
S()) as a unitary operator on L?(S?; C?).

Using the cylindrical symmetry and the matrix structure of the scattering
matrix, S(A) can be expressed as

L
S = BuctzSiN), S = | A5 55((1)) ’

where TE/R(X), Re(A) and Li()) act on L2((0,7), d6; C) and correspond
to the transmission and reflection operators of our scattering experiment.

We can state now the main uniqueness result of this work :



An inverse result at fixed energy

Theorem

Let (M, Q2 a,N\) and (I\;I, Q2, 3, 7\) be the parameters of two a priori
different KN-dS black holes. Denote by S()\) and S()\) the corresponding
scattering matrices at a fixed energy A € R. Assume that one of the
following equalities is fulfilled

Re(A) = Ri(N),
Le(N) = L

>
~—

)

as operators on L = L%((0,7); C) and for two different values of
k € % + Z. Then the parameters of the two black holes coincide, i.e.

M=M, a=3 Q>= Q> AN=A.




Comment: a more general result

We obtain more than only 4 parameters. Precisely,

Theorem

Under the same assumptions as in the previous Theorem, we recover in

fact the function
A — c(x, k)
a(x)
up to a diffeomorphism. Then, from the explicit forms of the potentials,
we obtain M =M, a=3, Q*>=Q?* A=A.

In the particular case @ = 0 or if the scattering operators are known for

two different energies A € R, we get more precise results. Precisely, there
exists a constant o € R such that

i(x) = a(x—o),
é(x,k) = c(x—o,k).




Comment: possible extension
Consider the class of Lorentzian metrics

2 2
g=T? W7(dt + mdy)? — %dr — %d;f — X7(adt + pdp)?
where
o T2=T2(r,u)>0.
o W2=W2(r)>0, X2=X?(u)>0.
o m=m(u), p=np(r).
e Z(r,u)=p(r) —am(u), a=constant, u = cos(h).



Comment: possible extension
Consider the class of Lorentzian metrics
W2 V4 V4 X2
_ 72 2 2

where

o T2=T2(r,u)>0.

o W2=W2(r)>0, X2=X?(u)>0.

o m=m(u), p=np(r).

e Z(r,u)=p(r) —am(u), a=constant, u = cos(h).

These Lorentzian metrics are stationary axisymmetric and possess a pair of
shearfree geodesic null congruences. Moreover, their geodesic flow is
completely integrable.

(Carter 1968, Debever, Kamran, McLenaghan 1983) The wave equation is
separable on (M, g). The Klein-Gordon equation is separable on (M, g) iff
T2=1.



Comment: possible extension
(Debever, Kamran, McLenaghan, 1984) If we assume additionally that
(M, g) has type D in the Petrov classification, i.e. the one-form

1

w:E

(m'(u)dr + ap'(r)dp),

is closed, then the massless Dirac equation is separable on (M, g).



Comment: possible extension

(Debever, Kamran, McLenaghan, 1984) If we assume additionally that
(M, g) has type D in the Petrov classification, i.e. the one-form

w= 2 (m () + 2p'(r) ).

is closed, then the massless Dirac equation is separable on (M, g).

@ This condition implies that m(x) and p(r) must be polynomial of
degree 2. For instance, p(r) = r?> + a® and m(p) = a(1 — pi?).
@ We recover the family of Kerr-dS-TAUB-NUT spacetime by setting

m(p) = a(l—p®)+2/(1—p),  p(r) = r’+(a+1)?, 2% = rP+(ap+l)?,

2 4
W2 = (a°~F+e’+g")—-2Mrtr’—A ((32 — )P+ (5 +2P)P ;)

4 A
X% = (1—4?) <1 +3Nalp+ 332u2> :



Comment: possible extension

Under the assumptions:
(1) (Radial part) There exist 0 < r— < ry < oo such that

o forall r < r<ry, W(r)>0,

o W2(ry) =0 and (W2)(ry) #0,

o W?¢c C2
(2) (Angular part) The angular function X(u) should be a small
perturbation of

o X € C®(0,B), X >0, X(0) = X(B) =0,

e X has a unique non-degenerate maximum at g € (0, B).

(3) Forall re (r—,ry), ue(0,B), we impose

X(n) _ W)

m(p) = p(r)

The previous uniqueness results could be generalized to (M, g) (work in
progress with Alexei lantchenko).
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Main ideas of the proof.

Recall that Yy = (Y}, Y2) are the eigenfunctions of the angular operator
As2(N).

Proposition

The operators Ri(A\)Rix(A\)*, (resp. Ri(N)*Ri(N)), on L2((0, 7)) are
diagonalizable on the Hilbert basis of eigenfunctions (Ykl/) 1en+, (resp.
(Y?2)ien+ ), associated to the eigenvalues |Ryi(M\)|?.

Moreover, the map | — |Ry ()| is strictly increasing for | large enough
(technical point).

From the equality Re()\) = Ri()), we can deduce that
AL >0, VI>L Ry(N)=Ru(\), Y=V, j=12,

up to multiplicative constants of modulus 1.



Main ideas of the proof : the Frobenius method.
Proposition

Set ¢ = aZT/\ For all X\ € R and (k, 1) € (3 + N) x N*, there exist
constants c,i‘, € C such that when 6 — 0

B . 0 it (A) 1
Yu(0,0) = ciye W{ ( 1 >9k * (2k +1)vI+¢ ( 0 >9k+1

k ¢ Ck —a) pit(N)? 0 62
* [€+2(1+o+ 1+¢ ‘<2k+1)(1+o]<1>7

+ 0(9k+3)}.

From Y,{, = \N/,{,, Jj=1,2, and for two different k, we deduce that
a=a, N= A. In particular,

1
Vk € 5 +Z, V¥l € N*, ,uk/()\) = ﬂk/()\)-




Complexification of the angular momentum.

So, it remains to recover the mass M and the charge Q.

@ We allow the physical angular momenta i4(\) to be complex. We set

z = —pg(N).
@ The Jost functions Fi(x, A, k, z) and Fgr(x, A, k, z) extend analytically

to C with respect to z.

o Similarly the scattering data A, (A, k, z) extend analytically to C with
respect to z. Moreover, the entries of the matrix AL (), k, z) satisfy:

Lemma
z— aj(\ k,z) € H(C), |aj(\ k,2)| < eAlRezl A= [ a(x)dx. J




Nevanlinna class

Theorem (Nevanlinna class, Uniqueness)

A function f belongs to N(M™T), where ™ = {z € C: Re(z) >0}, ifitis
analytic on M and if

s 1— i©
sup/ In+‘f< re )‘dg0<oo,
o<r<1lJ—r 1+ ref¥

>
where InT(x) = { anX’ ::i - 8’

+o0
1
If f € N(N™) satisfies f(a;) =0 with » — =00, then f=0in C.
/
1=0




Application

Proposition
The scattering data a;j(\, k,z) € N(MT).

Corollary

Under our main assumption, we have (up to multiplicative constants of
modulus 1)

arj(A k, (X)) = (A, k, fua(A)), VI € N*.

= 00, we get

Since (X)) = firr(X) and Z Mk/(>\

aLj(/\, k,Z) = §Lj()\7 k,Z),VZ e C,

(up to multiplicative constants of modulus 1)




An inverse result at localized energy

Corollary

Assume that Ri(\) = Ri()\) for all X in an open interval I. Then the
potentials a(x) and c(x, k) are uniquely determined.

Proof: From the assumption, we can show for instance that
ars(\ k,z) = adia(\ k,z), VzeC, VA€,
where |a| = 1. This implies that
4(., K)(2N) = (., k)(2)), VA e,
where g(x, k) = e2©(K) 3(x) is exponentially decreasing on R. Hence
4(., k)(2X) = ag(., k)(2)), VAER,

and therefore
q(x, k) = ag(x), VxeR.



An inverse result at localized energy

Taking the logarithmic derivative with respect to x, we obtain,

2(x) 7 (x)

a(x) a(x)

Thus, taking the real and imaginary parts of this equality, we have

+ 2ic(x, k) =

+ 2i&(x, k).

a(x) = a(x), c(x,k)=¢&(x,k).



End of the proof of the inverse problem at fixed energy

"Up to a Liouville transformation in the variable x", we define the 2 x 2
matrix-valued function P(x, \, k, z) by

P(Xa)\a kaz)'ER(XaAa k,Z) = FR(Xv)\a k,Z).

Question : What can we say about P(x, \, k,z) ?

e By inverting Fg, (det (Fg) =1), z — P;(x, A, k, z) belong to H(C),
are of exponential type and are bounded on JR.
e We calculate the asymptotics of a;j(A, k,z), z = +o0.

o Algebraic manipulations + uniqueness of the a;(\, k, z), we can
show that z — Pj(x, A, k, z) are also bounded on R.

e Phragmen-Lindel6f Thm: z — Pj(x, A, k, z) are bounded on C.



End of the proof

Liouville Thm: Pj(x, A, k, z) = Pj(x, A, k,0) for all z € C.
We calculate explicitly Pj(x, A, k,0).

Putting this last result in
P(X7A7 k,O)I':R(X, )‘7 k,Z) = FR(Xa)\v k,Z).

we find a simple link between I':R(X, A k,z) and Fgr(x, A, k, z).

Thus, we can recover (up to a diffeomorphism due to the Liouville
transformation) the function

A — c(x, k)
a(x)

From the explicit forms of the potentials : uniqueness of the
parameters of the black hole.



