# Boundary conditions and ground states for a scalar field theory on BTZ spacetime 

Claudio Dappiaggi<br>Quantum fields, scattering and spacetime horizons: mathematical challenges<br>Les Houches - 25/05/2018<br>Dipartimento di Fisica - Università di Pavia

## Outline of the Talk

(1) AdS and BTZ: Geometric Data
(2) Scalar Fields and Boundary Conditions in AdS
(3) Scalar Fields and Boundary Conditions in BTZ
(4) A glimpse on an existence theorem for fundamental solutions

## References

## Brute Force Approach:

- C.D. and H. Ferreira - Phys. Rev. D 94 (2016) no.12, 125016,
- F. Bussola, C. D., H. R. C. Ferreira and I. Khavkine, Phys. Rev. D 96 (2017) no.10, 105016,
- C.D., H. Ferreira, Benito A. Juárez-Aubry, Phys. Rev. D 97 (2018) no.8, 085022
- C. D., H. Ferreira and A. Marta, arXiv:1805.03135 [hep-th].

Algebraic version:

- Marco Benini, C. D., A. Schenkel, arXiv:1712.06686 [math-ph], to appear on Ann. Henri Poinc.
- C.D., H. Ferraira, Rev. Math. Phys. 30 (2018) 0004

Existence and uniqueness of fundamental solutions (funct. anal. aspects)

- C.D., Nicolò Drago, arXiv:1804.03434 [math-ph]


## AdS \& BTZ - Reasons

We consider the problem of the quantization of a massive scalar field on $A d S_{d+1} / B T Z$. Why?
(1) $A d S_{d+1}$ is a $(d+1)$-dimensional, maximally symmetric solution of the Einstein's equations with negative cosmological constant.
(2) $A d S_{d+1}$ and $B T Z$ are not globally hyperbolic
(3) $A d S_{d+1}$ and $B T Z$ possess a conformal boundary,
(4) Excellent prototypes to understand (A)QFT in presence of boundaries

First step: Construct the fundamental solutions for $\square-m_{0}^{2}-\xi R$

## AdS \& BTZ - Reasons

We consider the problem of the quantization of a massive scalar field on $A d S_{d+1} / B T Z$. Why?
(1) $A d S_{d+1}$ is a $(d+1)$-dimensional, maximally symmetric solution of the Einstein's equations with negative cosmological constant.
(2) $A d S_{d+1}$ and $B T Z$ are not globally hyperbolic

(4) Excellent prototypes to understand (A)QFT in presence of boundaries

First step: Construct the fundamental solutions for $\square-m_{0}^{2}-\xi R$

## AdS \& BTZ - Reasons

We consider the problem of the quantization of a massive scalar field on $A d S_{d+1} / B T Z$. Why?
(1) $A d S_{d+1}$ is a $(d+1)$-dimensional, maximally symmetric solution of the Einstein's equations with negative cosmological constant.
(2) $A d S_{d+1}$ and $B T Z$ are not globally hyperbolic
(3) $A d S_{d+1}$ and $B T Z$ possess a conformal boundary,
(4) Excellent prototypes to understand (A)QFT in presence of boundaries

Goal: Understand the interplay between boundary conditions and quantization
First step: Construct the fundamental solutions for $\square-m_{0}^{2}-\xi R$

## AdS \& BTZ - Reasons

We consider the problem of the quantization of a massive scalar field on $A d S_{d+1} / B T Z$. Why?
(1) $A d S_{d+1}$ is a $(d+1)$-dimensional, maximally symmetric solution of the Einstein's equations with negative cosmological constant.
(2) $A d S_{d+1}$ and $B T Z$ are not globally hyperbolic

3 $A d S_{d+1}$ and $B T Z$ possess a conformal boundary,
(4) Excellent prototypes to understand (A)QFT in presence of boundaries

Goal: Understand the interplay between boundary conditions and quantization
First step: Construct the fundamental solutions for $\square-m_{0}^{2}-\xi R$

## Motivations

## AdS - Geometry and the Poincaré chart

$A d S_{d+1}$ can be realized as the locus in $\mathbb{R}^{d+2}$ with metric

$$
d s^{2}=-d X_{0}^{2}-d X_{1}^{2}+\sum_{i=2}^{d+1} d X_{i}^{2}
$$

with

$$
-X_{0}^{2}-X_{1}^{2}+\sum_{i=2}^{d+1} X_{i}^{2}=-\ell^{2}, \quad \ell^{2} \doteq-\frac{d(d-1)}{\Lambda}
$$

The Poincaré chart is

$$
\left\{\begin{array}{l}
x_{0}=\ell\left(\frac{1+z^{2}}{2 z}+\frac{-t^{2}+\delta^{i j} x_{i} x_{j}}{2 z}\right) \\
x_{1}=\frac{\ell}{z} t, \\
X_{i}=\frac{\ell}{z} x_{i}, \quad i=2, \ldots, d \\
X_{d+1}=\ell\left(\frac{1-z^{2}}{2 z}-\frac{-t^{2}+\delta^{i j} x_{i} x_{j}}{2 z}\right)
\end{array}\right.
$$

## The Poincaré patch

In the Poincaré chart, $\mathrm{PAdS}_{d+1}$, the metric reads

$$
d s^{2}=\frac{\ell^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+\delta^{i j} d x_{i} d x_{j}\right], \quad i, j=1, \ldots, d-1
$$

where $z>0$. Observe that
(1) $\operatorname{PAdS}_{d+1}$ is conformally related to the upper half plane $\left(\mathbb{H}^{d+1}, \eta\right)$ with conformal factor $\Omega=\frac{z}{\ell}$.
(2) The chordal distance $\sigma$ in $\mathrm{PAdS}_{d+1}$ is $(\ell=1)$


The hyperplane $z=0$ in $\mathbb{R}^{d+1}$ is the conformal boundary of PAdS ${ }_{d+1}$.

## The Poincaré patch

In the Poincaré chart, $\mathrm{PAdS}_{d+1}$, the metric reads

$$
d s^{2}=\frac{\ell^{2}}{z^{2}}\left[-d t^{2}+d z^{2}+\delta^{i j} d x_{i} d x_{j}\right], \quad i, j=1, \ldots, d-1
$$

where $z>0$. Observe that
(1) $\operatorname{PAdS}_{d+1}$ is conformally related to the upper half plane $\left(\mathbb{H}^{d+1}, \eta\right)$ with conformal factor $\Omega=\frac{z}{\ell}$.
(2) The chordal distance $\sigma$ in $\operatorname{PAdS}_{d+1}$ is $(\ell=1)$

$$
\cosh (\sqrt{2 \sigma})=1+\sigma_{\mathbb{R}^{d+2}}, \quad \sigma_{\mathbb{R}^{d+2}}\left(x, x^{\prime}\right) \doteq \frac{1}{2} g^{A B}\left(X_{A}-X_{A}^{\prime}\right)\left(X_{B}-X_{B}^{\prime}\right)
$$

where $g^{A B}=\operatorname{diag}(-1,-1,1 \ldots, 1), A, B=0, \ldots, d+1$.
The hyperplane $z=0$ in $\mathbb{R}^{d+1}$ is the conformal boundary of $\mathrm{PAdS}_{d+1}$.

## The BTZ black hole

It is a stationary, axi-symmetric ( $2+1$ )-dimensional solution of Einstein's equations with $\Lambda=-\ell^{-2}<0$ with line element

$$
d s^{2}=-N^{2} d t^{2}+\frac{d r^{2}}{N^{2}}+r^{2}\left(d \varphi+N^{\varphi} d t\right)^{2}
$$

with

$$
N^{2}=-M+\frac{r^{2}}{\ell^{2}}+\frac{J^{2}}{4 r^{2}}, \quad N^{\varphi}=-\frac{J}{2 r^{2}} .
$$

(1) BTZ is topologically $\mathbb{R} \times I \times \mathbb{S}^{1}$, with $I \subset(0, \infty)$
(2) It possesses an inner and an outer horizons at

$$
r_{ \pm}^{2}=\frac{\ell^{2}}{2}\left(M \pm \sqrt{M^{2}-\frac{J^{2}}{\ell^{2}}}\right), \quad|J| \leq M \ell
$$

(3) It possesses a timelike Killing field $\left(r>r_{+}\right)$

$$
\chi=\partial_{t}+\Omega_{\mathcal{H}} \partial_{\varphi}, \quad \Omega_{\mathcal{H}}=\frac{r_{-}}{\ell r_{+}} .
$$

## From $\mathrm{AdS}_{3}$ to BTZ

The BTZ black hole is locally isometric to $\mathrm{AdS}_{3}$.
The universal cover of $\mathrm{AdS}_{3}$ can be covered with three patches:
Region i) $\left\{\begin{array}{ll}X_{0}=\sqrt{\alpha(r)} \cosh \left(r_{+} \varphi-r_{-} t\right), & X_{1}=\sqrt{\alpha(r)-1} \sinh \left(r_{+} t-r_{-} \varphi\right) \\ X_{2}=\sqrt{\alpha(r)} \sinh \left(r_{+} \varphi-r_{-} t\right), & X_{3}=\sqrt{\alpha(r)-1} \cosh \left(r_{+} t-r_{-} \varphi\right)\end{array}\right.$,
for $r \geq r_{+}$while, for $r_{-} \leq r \leq r_{+}$
Region ii) $\begin{cases}X_{0}=\sqrt{\alpha(r)} \cosh \left(r_{+} \varphi-r_{-} t\right), & X_{1}=-\sqrt{\alpha(r)-1} \sinh \left(r_{+} t-r_{-} \varphi\right) \\ X_{2}=\sqrt{\alpha(r)} \sinh \left(r_{+} \varphi-r_{-} t\right), & X_{3}=-\sqrt{\alpha(r)-1} \cosh \left(r_{+} t-r_{-} \varphi\right)\end{cases}$
where $\alpha(r) \doteq \frac{r^{2}-r^{2}-}{r_{+}^{2}-r_{-}^{2}}, \varphi \in \mathbb{R}$ and $t \in \mathbb{R}$.

$$
\mathrm{BTZ} \Longleftrightarrow \varphi \simeq \varphi+2 \pi
$$

## Klein-Gordon equation

## Klein-Gordon field in $\mathrm{PAdS}_{d+1}$

Consider $\phi: \operatorname{PAdS}_{d+1} \rightarrow \mathbb{R}$

$$
P \phi=\left(\square_{\mathrm{PAdS}}-m_{0}^{2}-\xi R\right) \phi=0 \quad \xi \in \mathbb{R} \text { and } R=-d(d+1)
$$

- Conformal rescaling $\longrightarrow \Phi \doteq \Omega^{\frac{1-d}{2}} \phi: \mathbb{H}^{d+1} \rightarrow \mathbb{R}$ obeys

$$
P_{\eta} \Phi \doteq\left(\square_{\eta}-\frac{m^{2}}{z^{2}}\right) \Phi=0, \quad m^{2}=m_{0}^{2}+\left(\xi-\frac{d-1}{4 d} R\right)
$$

- $P_{\eta}$ includes a potential singular at $z=0$.
- $P_{\eta}$ is not normally hynerbolic
- Constructing solutions requires boundary conditions at $z=0$.


## Does $P_{\eta}$ admit fundamental solutions?

## Klein-Gordon equation

## Klein-Gordon field in $\mathrm{PAdS}_{d+1}$

Consider $\phi:$ PAdS $_{d+1} \rightarrow \mathbb{R}$

$$
P \phi=\left(\square_{\mathrm{PAdS}}-m_{0}^{2}-\xi R\right) \phi=0 \quad \xi \in \mathbb{R} \text { and } R=-d(d+1)
$$

- Conformal rescaling $\longrightarrow \Phi \doteq \Omega^{\frac{1-d}{2}} \phi: \stackrel{\circ}{H}^{d+1} \rightarrow \mathbb{R}$ obeys

$$
P_{\eta} \Phi \doteq\left(\square_{\eta}-\frac{m^{2}}{z^{2}}\right) \Phi=0, \quad m^{2}=m_{0}^{2}+\left(\xi-\frac{d-1}{4 d} R\right)
$$

- $P_{\eta}$ includes a potential singular at $z=0$
- $P_{\eta}$ is not normally hyperbolic
- Conctruetine colutione reauires $\mathbf{h}$ oundary conditions at $z=0$


## Does $P_{\eta}$ admit fundamental solutions?

## Klein-Gordon field in $\mathrm{PAdS}_{d+1}$

Consider $\phi: \operatorname{PAdS}_{d+1} \rightarrow \mathbb{R}$

$$
P \phi=\left(\square_{\mathrm{PAdS}}-m_{0}^{2}-\xi R\right) \phi=0 \quad \xi \in \mathbb{R} \text { and } R=-d(d+1)
$$

- Conformal rescaling $\longrightarrow \Phi \doteq \Omega^{\frac{1-d}{2}} \phi: \mathbb{H}^{d+1} \rightarrow \mathbb{R}$ obeys

$$
P_{\eta} \Phi \doteq\left(\square_{\eta}-\frac{m^{2}}{z^{2}}\right) \Phi=0, \quad m^{2}=m_{0}^{2}+\left(\xi-\frac{d-1}{4 d} R\right) .
$$

- $P_{\eta}$ includes a potential singular at $z=0$.
- $P_{\eta}$ is not normally hyperbolic.
- Constructing solutions requires boundary conditions at $z=0$.


## Klein-Gordon field in $\mathrm{PAdS}_{d+1}$

Consider $\phi: \operatorname{PAdS}_{d+1} \rightarrow \mathbb{R}$

$$
P \phi=\left(\square_{\mathrm{PAdS}}-m_{0}^{2}-\xi R\right) \phi=0 \quad \xi \in \mathbb{R} \text { and } R=-d(d+1)
$$

- Conformal rescaling $\longrightarrow \Phi \doteq \Omega^{\frac{1-d}{2}} \phi: \mathbb{H}^{d+1} \rightarrow \mathbb{R}$ obeys

$$
P_{\eta} \Phi \doteq\left(\square_{\eta}-\frac{m^{2}}{z^{2}}\right) \Phi=0, \quad m^{2}=m_{0}^{2}+\left(\xi-\frac{d-1}{4 d} R\right) .
$$

- $P_{\eta}$ includes a potential singular at $z=0$.
- $P_{\eta}$ is not normally hyperbolic.
- Constructing solutions requires boundary conditions at $z=0$.

Does $P_{\eta}$ admit fundamental solutions?

## Brute Force construction

We start with a mode decomposition:

- Let $\underline{x}=\left(t, x_{1}, \ldots, x_{d-1}\right)$ and $\underline{k}=\left(\omega, k_{1}, \ldots, k_{d-1}\right)$. Then

$$
\Phi(\underline{x}, z)=\int_{\mathbb{R}^{d}} \frac{d^{d} \underline{k}}{(2 \pi)^{\frac{d}{2}}} e^{i \underline{k} \cdot \underline{x}} \widehat{\Phi}_{\underline{k}}(z)
$$

yields $\left(\lambda \doteq \omega^{2}-\sum_{i=1}^{d-1} k_{i}^{2}\right)$

$$
P_{\eta} \Phi=0 \Longleftrightarrow L \widehat{\Phi}_{\underline{k}}=\left(-\frac{d^{2}}{d z^{2}}+\frac{m^{2}}{z^{2}}-\lambda\right) \widehat{\Phi}_{\underline{k}}=0
$$

This is a singular Sturm-Liouville equation on $(0, \infty)$.

## The Endpoint Classification - I

The most general solution of $L \widehat{\Phi}_{\underline{k}}=\lambda \widehat{\Phi}_{\underline{k}}$ is for $\lambda>0$

$$
\widehat{\Phi}_{\underline{k}}(z)=a(\underline{k}) \sqrt{z} J_{\nu}(\sqrt{\lambda} z)+b(\underline{k}) \sqrt{z} Y_{\nu}(\sqrt{\lambda} z)
$$

where $\nu=\frac{1}{2} \sqrt{1+4 m^{2}} \geq 0 \ldots . m^{2} \in\left[-\frac{1}{4}, \infty\right)$, the BF bound.
Which boundary conditions are allowed? How do we implement them?

- Observe that $\sqrt{z} J_{\nu}(\sqrt{\lambda} z) \propto_{z \rightarrow 0} z^{\nu+\frac{1}{2}}$ and $\sqrt{z} Y_{\nu}(\sqrt{\lambda} z) \propto_{z \rightarrow 0} z^{-\nu+}$

Not obvious how to impose standard (Robin) boundary conditions at $z=0$ !

## The Endpoint Classification - I

The most general solution of $L \widehat{\Phi}_{\underline{k}}=\lambda \widehat{\Phi}_{\underline{k}}$ is for $\lambda>0$

$$
\widehat{\Phi}_{\underline{k}}(z)=a(\underline{k}) \sqrt{z} J_{\nu}(\sqrt{\lambda} z)+b(\underline{k}) \sqrt{z} Y_{\nu}(\sqrt{\lambda} z)
$$

where $\nu=\frac{1}{2} \sqrt{1+4 m^{2}} \geq 0 \ldots . m^{2} \in\left[-\frac{1}{4}, \infty\right)$, the BF bound.
Which boundary conditions are allowed? How do we implement them?

- Observe that $\sqrt{z} J_{\nu}(\sqrt{\lambda} z) \propto_{z \rightarrow 0} z^{\nu+\frac{1}{2}}$ and $\sqrt{z} Y_{\nu}(\sqrt{\lambda} z) \propto_{z \rightarrow 0} z^{-\nu+\frac{1}{2}}$

Not obvious how to impose standard (Robin) boundary conditions at $z=0$ !
Singular Sturm-Liouville theory is the answer

## The Endpoint Classification - II

Allowed boundary conditions depend on the solutions near the endpoints:
Endpoint $z=0$ : For an operator $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$ we call $z=0$
(i) regular $(R)$ if $\exists z_{0} \in(0, \infty)$ such that $V(z) \in L^{1}\left(0, z_{0}\right)$,
(ii) limit circle (LC) if $\exists z_{0}$ and $\lambda \in \mathbb{C}$ such that all elements in the kernel of the operator $L_{V}-\lambda$ lie in $L^{2}\left(0, z_{0}\right)$,
(iii) limit point ( $L P$ ) if it is neither ( R ) nor ( LC ).

Endpoint $z \neq 0$ : For an operator $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$ we call the endpoint
(a) sinoular if $7 \rightarrow \infty$
kernel of the operator $L_{V}-\lambda$ lie in $L^{2}\left(z_{0}, \infty\right)$,
(c) limit point (LP) if it is not (LC).

## The Endpoint Classification - ||

Allowed boundary conditions depend on the solutions near the endpoints:
Endpoint $z=0$ : For an operator $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$ we call $z=0$
(i) regular $(R)$ if $\exists z_{0} \in(0, \infty)$ such that $V(z) \in L^{1}\left(0, z_{0}\right)$,
(ii) limit circle (LC) if $\exists z_{0}$ and $\lambda \in \mathbb{C}$ such that all elements in the kernel of the operator $L_{V}-\lambda$ lie in $L^{2}\left(0, z_{0}\right)$,
(iii) limit point (LP) if it is neither ( R ) nor (LC).

Endpoint $z \neq 0$ : For an operator $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$ we call the endpoint
(a) singular if $z \rightarrow \infty$,
(b) limit circle (LC) if $\exists \lambda \in \mathbb{C}$ and $z_{0} \in(0, \infty)$ such that all elements in the kernel of the operator $L_{V}-\lambda$ lie in $L^{2}\left(z_{0}, \infty\right)$,
(c) limit point (LP) if it is not (LC).

## Boundary Conditions - I

Goal: Implement boundary conditions for non regular endpoints
(1) Choose $\Phi_{1}(z)$ the principal solution at $z=0$, i.e. the unique one (up to
scalar multiples)

$$
\left.\lim _{z \rightarrow 0} \frac{\Phi_{1}(z)}{\Phi(z)}=0 \quad \forall \Phi(z) \right\rvert\, L_{V} \Phi=\lambda \Phi, \lambda \in \mathbb{C}
$$

(2) Pick a second $L^{2}$-solution $\Phi_{2}(z)$, linearly indep. from $\Phi_{1}$ (non unique)
(2) Observe that, up to a scalar multiple, if $(\underline{I} V-\lambda) \phi=0, \exists \alpha \in[0, \pi)$ such that
and that, for a regular endpoint at $z=0$,
$\cos \alpha^{\prime} \phi(0)+\sin \alpha \Phi^{\prime}(0)=0 \Longleftrightarrow \cos \alpha^{2} W_{z}\left[\phi, \Phi_{1}\right]+\sin \alpha W_{z}\left[\phi, \phi_{2}\right]=0$ where $W_{z}\left[\phi, \Phi_{i}\right]=\Phi(z) \phi_{i}^{\prime}(z)-\Phi^{\prime}(z) \Phi_{i}(z)$ is the Wronskian.

## Boundary Conditions - I

Goal: Implement boundary conditions for non regular endpoints
Let $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$,
(1) Choose $\Phi_{1}(z)$ the principal solution at $z=0$, i.e. the unique one (up to scalar multiples)

$$
\left.\lim _{z \rightarrow 0} \frac{\Phi_{1}(z)}{\Phi(z)}=0 \quad \forall \Phi(z) \right\rvert\, L_{V} \Phi=\lambda \Phi, \lambda \in \mathbb{C}
$$

(2) Pick a second $L^{2}$-solution $\Phi_{2}(z)$, linearly indep. from $\Phi_{1}$ (non unique)
(3) Observe that, up to a scalar multiple, if $\left(L_{v}-\lambda\right) \Phi=0, \exists \alpha \in[0, \pi)$ such that
$\cos \alpha \Phi(0)+\sin \alpha \Phi^{\prime}(0)=0 \Longleftrightarrow \cos \alpha W_{z}\left[\Phi, \Phi_{1}\right]+\sin \alpha W_{z}\left[\phi, \Phi_{2}\right]=0$ where $W_{z}\left[\phi, \Phi_{i}\right]=\Phi(z) \Phi_{i}^{\prime}(z)-\phi^{\prime}(z) \Phi_{i}(z)$ is the Wronskian.

## Boundary Conditions - I

Goal: Implement boundary conditions for non regular endpoints
Let $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$,
(1) Choose $\Phi_{1}(z)$ the principal solution at $z=0$, i.e. the unique one (up to scalar multiples)

$$
\left.\lim _{z \rightarrow 0} \frac{\Phi_{1}(z)}{\Phi(z)}=0 \quad \forall \Phi(z) \right\rvert\, L_{V} \Phi=\lambda \Phi, \lambda \in \mathbb{C}
$$

(2) Pick a second $L^{2}$-solution $\Phi_{2}(z)$, linearly indep. from $\Phi_{1}$ (non unique)
(3) Observe that, up to a scalar multiple, if $\left(L_{V}-\lambda\right) \Phi=0, \exists \alpha \in[0, \pi)$ such that
$\cos \alpha \Phi(0)+\sin \alpha \Phi^{\prime}(0)=0 \Longleftrightarrow \cos \alpha W_{z}\left[\Phi, \Phi_{1}\right]+\sin \alpha W_{z}\left[\phi, \Phi_{2}\right]=0$ where $W_{z}\left[\phi, \Phi_{i}\right]=\Phi(z) \phi_{i}^{\prime}(z)-\phi^{\prime}(z) \Phi_{i}(z)$ is the Wronskian.

## Boundary Conditions - I

Goal: Implement boundary conditions for non regular endpoints
Let $L_{V} \doteq-\frac{d^{2}}{d z^{2}}+V(z)$,
(1) Choose $\Phi_{1}(z)$ the principal solution at $z=0$, i.e. the unique one (up to scalar multiples)

$$
\left.\lim _{z \rightarrow 0} \frac{\Phi_{1}(z)}{\Phi(z)}=0 \quad \forall \Phi(z) \right\rvert\, L_{V} \Phi=\lambda \Phi, \lambda \in \mathbb{C}
$$

(2) Pick a second $L^{2}$-solution $\Phi_{2}(z)$, linearly indep. from $\Phi_{1}$ (non unique)
(3) Observe that, up to a scalar multiple, if $\left(L_{V}-\lambda\right) \Phi=0, \exists \alpha \in[0, \pi)$ such that

$$
\Phi(z)=\cos \alpha \Phi_{1}(z)+\sin \alpha \Phi_{2}(z)
$$

and that, for a regular endpoint at $z=0$, $\cos \alpha \Phi(0)+\sin \alpha \Phi^{\prime}(0)=0 \Longleftrightarrow \cos \alpha W_{z}\left[\Phi, \Phi_{1}\right]+\sin \alpha W_{z}\left[\Phi, \Phi_{2}\right]=0$ where $W_{z}\left[\Phi, \Phi_{i}\right]=\Phi(z) \Phi_{i}^{\prime}(z)-\Phi^{\prime}(z) \Phi_{i}(z)$ is the Wronskian.

## Boundary Conditions - ||

Key Observations: If we consider solutions which are $L^{2}\left(0, z_{0}\right), z_{0} \in(0, \infty)$

- $\Phi_{1}(z)$ always exists while $\Phi_{2}(z)$ can be found if $z=0$ is R or LC
- The identity with the Wronskian is always meaningful and we call
(1) $\alpha=0$ (generalized) Dirichlet boundary condition,
(2) $\alpha=\frac{\pi}{2}$ (generalized) Neumann boundary condition,
(3) $\alpha \in(0, \pi), \alpha \neq \frac{\pi}{2}$ (generalized) Robin boundary condition


## Boundary Conditions - III

Recall that we consider $L=-\frac{d^{2}}{d z^{2}}+\frac{m^{2}}{z^{2}}$ and $\lambda=q^{2} \doteq \omega^{2}-\sum_{i=1}^{d-1} k_{i}^{2}$.
The fundamental pair of solutions $\left(\widehat{\Phi}_{\underline{\underline{L}}}^{1}, \widehat{\Phi}_{\underline{k}}^{2}\right)$ is

$$
\begin{array}{ll}
\widehat{\Phi}_{\underline{k}}^{1}(z) & =\sqrt{\frac{\pi}{2}} q^{-\nu} \sqrt{z} J_{\nu}(q z), \\
\widehat{\Phi}_{\underline{k}}^{2}(z) & = \begin{cases}-\sqrt{\frac{\pi}{2}} q^{\nu} \sqrt{z} J_{-\nu}(q z), & \nu \in(0,1), \\
-\sqrt{\frac{\pi}{2}} \sqrt{z}\left[Y_{0}(q z)-\frac{2}{\pi} \log (q)\right], & \nu=0 .\end{cases}
\end{array}
$$

| $\nu=\frac{1}{2} \sqrt{1+4 m^{2}}$ | Classification of $z=0$ | Boundary condition at $z=0$ |
| :---: | :---: | :---: |
| $\nu=\frac{1}{2}$ | Regular (R) | $\cot (\alpha) \widehat{\Phi}_{\underline{k}}(0)+\widehat{\Phi}_{\underline{k}}^{\prime}(0)=0$ |
| $\nu \in[0,1), \nu \neq \frac{1}{2}$ | Limit-circle (LC) | $-\cot (\alpha) W_{z}\left[\widehat{\Phi}_{\underline{k}}, \widehat{\Phi}_{\underline{k}}^{1}\right]+W_{z}\left[\widehat{\Phi}_{\underline{k}}, \widehat{\Phi}_{\underline{k}}^{2}\right]=0$ |
| $\nu \in[1, \infty)$ | Limit-point (LP) | Not required |

## Ground States - Mode Expansion I

## Goal: Kill two birds with one stone

We construct directly the two-point function of a ground state
(1) Let $\omega_{2, \mathbb{H}} \doteq\left(z z^{\prime}\right)^{\frac{1-d}{2}} \omega_{2} \in \mathcal{D}^{\prime}\left(\mathbb{H}^{d+1} \times \mathbb{H}^{d+1}\right)$. It holds

$$
\left(P_{\eta} \otimes \mathbb{I}\right) G_{\mathbb{H}}=\left(\mathbb{I} \otimes P_{\eta}\right) G_{\mathbb{H}}=0
$$

(2) Consider the Fourier transform along $\mathbb{R}^{d} \ni \underline{x}$. Integral kernel:
with

$$
(L \otimes \mathbb{I}) \widehat{\omega}_{2, \underline{k}}=(\mathbb{I} \otimes L) \widehat{\omega}_{2, \underline{k}}=\lambda \widehat{\omega}_{2, \underline{k}}, \quad L=-\frac{d^{2}}{d z^{2}}+\frac{m^{2}}{z^{2}} .
$$

## Ground States - Mode Expansion I

## Goal: Kill two birds with one stone

We construct directly the two-point function of a ground state
(1) Let $\omega_{2, \mathbb{H}} \doteq\left(z z^{\prime}\right)^{\frac{1-d}{2}} \omega_{2} \in \mathcal{D}^{\prime}\left(\mathbb{H}^{d+1} \times \mathbb{H}^{d+1}\right)$. It holds

$$
\left(P_{\eta} \otimes \mathbb{I}\right) G_{\mathbb{H}}=\left(\mathbb{I} \otimes P_{\eta}\right) G_{\mathbb{H}}=0
$$

(2) Consider the Fourier transform along $\mathbb{R}^{d} \ni \underline{x}$. Integral kernel:

$$
\omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{d \omega}{\sqrt{2 \pi}} e^{i \omega\left(t-t^{\prime}-i \epsilon\right)} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right) .
$$

with

$$
(L \otimes \mathbb{I}) \widehat{\omega}_{2, \underline{k}}=(\mathbb{I} \otimes L) \widehat{\omega}_{2, \underline{k}}=\lambda \widehat{\omega}_{2, \underline{k}}, \quad L=-\frac{d^{2}}{d z^{2}}+\frac{m^{2}}{z^{2}} .
$$

## The case with $\nu \geq 1$

In order to construct $\widehat{\omega}_{2, \underline{k}}$, we need that $i G\left(x, x^{\prime}\right) \doteq \omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)-\omega_{2, \mathbb{H}}\left(x^{\prime}, x\right)$,

$$
\left.G\left(x, x^{\prime}\right)\right|_{t=t^{\prime}}=0, \quad \partial_{t} G\left(x, x^{\prime}\right)=-\left.\partial_{t^{\prime}} G\left(x, x^{\prime}\right)\right|_{t=t^{\prime}}=\delta\left(x, x^{\prime}\right) .
$$

- Finding $\widehat{\omega}_{2, \underline{k}}$ is a problem of eigenfunction expansion of the $\delta$-distribution (cf. Titchmarsh 1962)
- $\widehat{\omega}_{2, \underline{k}}$ is not unique and it depends on the boundary conditions

For $\nu \geq 1$ the choice is unique - Fourier-Bessel expansion


The outcome is:
$\lim _{c \rightarrow 0^{+}} \sqrt{2 z z^{\prime}} \int_{0}^{\infty} d q q \frac{\sin \left(\sqrt{k^{2}+q^{2}}\left(t-t^{\prime}-i \epsilon\right)\right)}{\sqrt{\pi\left(k^{2}+q^{2}\right)}} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)$ $J_{\frac{d-3}{2}}(k r) J_{\nu}(q z) J_{\nu}\left(q z^{\prime}\right)$.

## The case with $\nu \geq 1$

In order to construct $\widehat{\omega}_{2, \underline{\underline{k}}}$, we need that $i G\left(x, x^{\prime}\right) \doteq \omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)-\omega_{2, \mathbb{H}}\left(x^{\prime}, x\right)$,

$$
\left.G\left(x, x^{\prime}\right)\right|_{t=t^{\prime}}=0, \quad \partial_{t} G\left(x, x^{\prime}\right)=-\left.\partial_{t^{\prime}} G\left(x, x^{\prime}\right)\right|_{t=t^{\prime}}=\delta\left(x, x^{\prime}\right)
$$

- Finding $\widehat{\omega}_{2, \underline{k}}$ is a problem of eigenfunction expansion of the $\delta$-distribution ( $c f$. Titchmarsh 1962)
- $\widehat{\omega}_{2, \underline{k}}$ is not unique and it depends on the boundary conditions.

For $\nu \geq 1$ the choice is unique - Fourier-Bessel expansion

$$
\widehat{\omega}_{2, \underline{k}}=\sqrt{z z^{\prime}} \int_{0}^{\infty} d q q J_{\nu}(q z) J_{\nu}\left(q z^{\prime}\right), \quad q^{2}=\omega^{2}-\sum_{i=1}^{d-1} k_{i}^{2} .
$$

The outcome is:

$$
\begin{gathered}
G\left(x, x^{\prime}\right)= \\
\lim _{\epsilon \rightarrow 0^{+}} \sqrt{2 z z^{\prime}} \int_{0}^{\infty} d q q \frac{\sin \left(\sqrt{k^{2}+q^{2}}\left(t-t^{\prime}-i \epsilon\right)\right)}{\sqrt{\pi\left(k^{2}+q^{2}\right)}} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) J_{\nu}(q z) J_{\nu}\left(q z^{\prime}\right) .
\end{gathered}
$$

## The case with $\nu \in(0,1)$

In this regime, Robin-like boundary conditions can be imposed

- There exists two known regimes: $\boldsymbol{c}=\cot \alpha \geq 0$ and $c=\cot \alpha<0$

$$
\delta\left(z-z^{\prime}\right)=\sqrt{z z^{\prime}} \int_{0}^{\infty} d q q \frac{\left[c J_{\nu}(q z)-q^{2 \nu} J_{-\nu}(q z)\right]\left[c J_{\nu}\left(q z^{\prime}\right)-q^{2 \nu} J_{-\nu}\left(q z^{\prime}\right)\right]}{c^{2}-2 c q^{2 \nu} \cos (\pi \nu)+q^{4 \nu}}, \quad c \leq 0
$$

or

$$
\begin{aligned}
\delta\left(z-z^{\prime}\right)= & \sqrt{z z^{\prime}} \int_{0}^{\infty} d q q \frac{\left[c J_{\nu}(q z)-q^{2 \nu} J_{-\nu}(q z)\right]\left[c J_{\nu}\left(q z^{\prime}\right)-q^{2 \nu} J_{-\nu}\left(q z^{\prime}\right)\right]}{c^{2}-2 c q^{2 \nu} \cos (\pi \nu)+q^{4 \nu}}+ \\
& +2 \sqrt{z z^{\prime}} c^{\frac{1}{\nu}} \frac{\sin (\pi \nu)}{\pi \nu} K_{\nu}\left(c^{\frac{1}{2 \nu}} z\right) K_{\nu}\left(c^{\frac{1}{2 \nu}} z^{\prime}\right), \quad c>0
\end{aligned}
$$

For certain Robin boundary conditions, there are bound states!

## Ground States - Mode Expansion II

What have we learned?

- We can construct Green operators for all values of $m^{2}$ and for all Robin boundary conditions, when existent
- In certain regimes there are bound states (bad for quantization)
- The result is consistent with the work of Wald \& Ishibashi (CMP 2003)


## Ground States - Mode Expansion II

What have we learned?

- We can construct Green operators for all values of $m^{2}$ and for all Robin boundary conditions, when existent
- In certain regimes there are bound states (bad for quantization)
- The result is consistent with the work of Wald \& Ishibashi (CMP 2003)

What is missing?

## From $G_{\mathbb{H}}$ to a ground state $\omega_{2, \mathbb{H}}$

From the form of $G_{H H}$ we can construct

$$
\begin{aligned}
& \omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{d \omega}{\sqrt{2 \pi}} e^{i \omega\left(t-t^{\prime}-i \epsilon\right)} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right)= \\
& \quad=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} d q q \frac{e^{i\left(\sqrt{k^{2}+q^{2}}\left(t-t^{\prime}-i \epsilon\right)\right)}}{\sqrt{2 \pi\left(k^{2}+q^{2}\right)}} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right)
\end{aligned}
$$

One can prove that
(1) $\omega_{2, H H}\left(x, x^{\prime}\right)$ is the integral kernel of a bi-distribution $\omega_{2, H H}$ in $\mathcal{D}^{\prime}\left(\mathbb{H}^{d+1} \times \mathbb{H}^{d+1}\right)$,
(3) $\omega_{2, \text { Fil }}$ is maximally symmetric.
$\omega_{2, \text { III }}$ is the ground state

## From $G_{\mathbb{H}}$ to a ground state $\omega_{2, \mathbb{H}}$

From the form of $G_{H H}$ we can construct

$$
\begin{aligned}
& \omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{d \omega}{\sqrt{2 \pi}} e^{i \omega\left(t-t^{\prime}-i \epsilon\right)} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right)= \\
& \quad=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} d q q \frac{e^{i\left(\sqrt{k^{2}+q^{2}}\left(t-t^{\prime}-i \epsilon\right)\right)}}{\sqrt{2 \pi\left(k^{2}+q^{2}\right)}} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right)
\end{aligned}
$$

One can prove that
(1) $\omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)$ is the integral kernel of a bi-distribution $\omega_{2, \mathbb{H}}$ in $\mathcal{D}^{\prime}\left(\mathbb{H}^{d+1} \times \mathbb{H}^{d+1}\right)$,
(2) $\left(P_{\eta} \otimes \mathbb{I}\right) \omega_{2, \mathbb{H}}=\left(\mathbb{I} \otimes P_{\eta}\right) \omega_{2, \mathbb{H}}=0$ and $\omega_{2, \mathbb{H}}(f, f) \geq 0$ for all $f \in C_{0}^{\infty}\left(\mathbb{H}^{d+1}\right)$,
(3) $\omega_{2, H}$ is maximally symmetric.

## From $G_{\mathbb{H}}$ to a ground state $\omega_{2, \mathbb{H}}$

From the form of $G_{H H}$ we can construct

$$
\begin{aligned}
& \omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{d \omega}{\sqrt{2 \pi}} e^{i \omega\left(t-t^{\prime}-i \epsilon\right)} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right)= \\
& \quad=\lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} d q q \frac{e^{i\left(\sqrt{k^{2}+q^{2}}\left(t-t^{\prime}-i \epsilon\right)\right)}}{\sqrt{2 \pi\left(k^{2}+q^{2}\right)}} \int_{0}^{\infty} d k\left(\frac{k}{r}\right)^{\frac{d-3}{2}} J_{\frac{d-3}{2}}(k r) \widehat{\omega}_{2, \underline{k}}\left(z, z^{\prime}\right)
\end{aligned}
$$

One can prove that
(1) $\omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)$ is the integral kernel of a bi-distribution $\omega_{2, \mathbb{H}}$ in $\mathcal{D}^{\prime}\left(\mathbb{H}^{d+1} \times \mathbb{H}^{d+1}\right)$,
(2) $\left(P_{\eta} \otimes \mathbb{I}\right) \omega_{2, \mathbb{H}}=\left(\mathbb{I} \otimes P_{\eta}\right) \omega_{2, \mathbb{H}}=0$ and $\omega_{2, \mathbb{H}}(f, f) \geq 0$ for all $f \in C_{0}^{\infty}\left(\mathbb{H}^{d+1}\right)$,
(3) $\omega_{2, H}$ is maximally symmetric.
$\omega_{2, \mathbb{H}}$ is the ground state

## The Ground States

## Explicit expression for $\omega_{2, \mathbb{H}}$ - I

We can write $\omega_{2, \mathbb{H}}$ in terms of special functions:

- Call $u\left(x, x^{\prime}\right)=\cosh ^{2}\left(\frac{\sqrt{2 \sigma\left(x, x^{\prime}\right)}}{2}\right)$. Then $u=1+\frac{\sigma_{\mathbb{M}}\left(x, x^{\prime}\right)}{2 z z^{\prime}}$ where $\sigma_{\mathbb{M}}$ is the Minkowski geodesic distance.


## Proposition [First Case]

Let $\nu \geq 1$ and let

$$
\omega_{2}^{D}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}^{-\frac{d}{2}-\nu} \frac{F\left(\frac{d}{2}+\nu, \frac{1}{2}+\nu, 1+2 \nu ; u_{\epsilon}^{-1}\right)}{\Gamma(1+2 \nu)}
$$

The integral kernel of the ground state reads:

$$
\omega_{2, \mathbb{H}}\left(x, x^{\prime}\right)=\mathcal{N}(\nu, d) \omega_{2}^{D}\left(x, x^{\prime}\right),
$$

where $\mathcal{N}(\nu, d)$ is a normalization constant.

## Explicit expression for $\omega_{2, \mathbb{H}}-$ II

## Proposition [Second Case]

Let $\nu \in(0,1)$, for every $\alpha \in\left[0, \frac{\pi}{2}\right]$ there exists a ground state built out of $\omega_{2, \mathbb{H}}^{(\alpha)}$ and

$$
\begin{aligned}
& \omega_{2}^{D}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}^{-\frac{d}{2}-\nu} \frac{F\left(\frac{d}{2}+\nu, \frac{1}{2}+\nu, 1+2 \nu ; u_{\epsilon}^{-1}\right)}{\Gamma(1+2 \nu)} \\
& \omega_{2}^{N}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}^{-\frac{d}{2}+\nu} \frac{F\left(\frac{d}{2}-\nu, \frac{1}{2}-\nu, 1-2 \nu ; u_{\epsilon}^{-1}\right)}{\Gamma(1-2 \nu)}
\end{aligned}
$$

Notice that

- There is no ground state neither for Robin boundary conditions with $\alpha \in\left(\frac{\pi}{2}, \pi\right)$ nor for $\nu=0$ due to the bound states, though a causal propagator exists.


## The Ground States

## Singular Structure of $\omega_{2, \mathbb{H}}^{(\alpha)}-$ Global Form

## Theorem

Let $\omega_{2, H /}^{(\alpha)}$ be the ground state for a generic, admissible boundary condition. Then

$$
W F\left(\omega_{2, \mathbb{H}}^{(\alpha)}\right)=\left\{\left(x, k_{x}, x^{\prime}, k_{x^{\prime}}\right) \in T^{*}\left(\mathbb{H}^{d+1}\right)^{x 2} \backslash\{0\} \mid\left(x_{ \pm}, k_{x_{ \pm}}\right) \sim\left(x^{\prime}, k_{x^{\prime}}\right), k_{x} \triangleright 0\right\}
$$

where $\sim$ entails that $x_{ \pm}=(\underline{x}, \pm z)$ and $x^{\prime}=\left(\underline{x}^{\prime}, z^{\prime}\right)$ are connected by a lightlike geodesic $\gamma$ in $\mathbb{M}^{d+1}$, while $k_{x_{ \pm}}=\left(k_{\underline{x}}, \pm k_{z}\right)$ is parallel transported along $\gamma$ to $k_{x^{\prime}}$.

Observe that:

- As expected, singularities are reflected at the boundary.
- In every globally hyperbolic subregion of $\mathrm{PAdS}_{d+1}$ or, equivalently, of $\stackrel{ }{H}^{d+1}$, the WF is of Hadamard type.


## The BTZ Scenario

## What about BTZ?

Consider $\phi: B T Z \rightarrow \mathbb{R}$

$$
P \phi=\left(\square_{B T Z}-m_{0}^{2}-\xi R\right) \phi=0
$$

Since $\partial_{t}, \partial_{\varphi}$ are Killing fields

$$
\phi(t, r, \varphi)=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}} d \omega e^{-i \omega t+i k \varphi} \Psi_{\omega k}(r)
$$

where the remaining unknown satisfies

$$
L \Psi_{\omega k}(z)=\frac{d}{d z}\left(z \frac{d \Psi_{\omega k}}{d z}\right)+q(z) \Psi_{\omega k}(z)=0
$$

being $z=\frac{r^{2}-r_{+}^{2}}{r^{2}-r_{-}^{2}} \in(0,1)$ and setting $\mu^{2}=m_{0}^{2} \ell^{2}-6 \xi$

$$
q(z)=\frac{1}{4(1-z)}\left[\frac{\ell^{2}\left(\omega \ell r_{+}-k r_{-}\right)^{2}}{\left(r_{+}^{2}-r_{-}^{2}\right) z}-\frac{\ell^{2}\left(\omega \ell r_{-}-k r_{+}\right)^{2}}{\left(r_{+}^{2}-r_{-}^{2}\right)}-\frac{\mu^{2}}{1-z}\right]
$$

## The BTZ Scenario

## The solutions

Using Froebenius method one can construct two linearly independent solutions $\left(\mu^{2} \neq(n-1)^{2}-1, n \in \mathbb{N}\right)$

$$
\left\{\begin{array}{l}
\Psi_{1}(z)=z^{\gamma}(1-z)^{\beta} F(a, b, a+b-c ; 1-z) \\
\Psi_{2}(z)=z^{\gamma}(1-z)^{1-\beta} F(c-a, c-b, c-a-b+1 ; 1-z)
\end{array}\right.
$$

where

$$
\gamma=-i \frac{\ell^{2} r_{+}\left(\omega-k \Omega_{\mathcal{H}}\right)}{2\left(r_{+}^{2}-r_{-}^{2}\right)} \text { and } \beta=\frac{1}{2}\left(1+\sqrt{1+\mu^{2}}\right)
$$

and

$$
\left\{\begin{array}{l}
a=\frac{1}{2}\left(1+\sqrt{1+\mu^{2}}-i \ell \frac{\ell\left(\omega-k \Omega_{\mathcal{H}}\right)}{r_{-}-r_{-}}+i \ell \frac{k}{r_{+}}\right) \\
b=\frac{1}{2}\left(1+\sqrt{1+\mu^{2}}-i \ell \frac{\ell\left(\omega-k \Omega_{\mathcal{H}}\right)}{r_{+}+r_{-}}+i \ell \frac{k}{r_{+}}\right) \\
c=1-i \frac{\ell^{2} r_{+}\left(\omega-k \Omega_{\mathcal{H}}\right)}{r_{+}^{2}-r_{-}^{2}}
\end{array}\right.
$$

## Endpoint Classification

We need to control the square integrability of the solutions at

$$
z=0 \text { (horizon) and } z=1 \text { (conformal infinity) }
$$

- $z=0$ is always Limit-point
- $z=1$ can be either Limit-point or Limit-circle

| $\mu^{2}=m_{0}^{2} \ell^{2}-6 \xi$ | Classification of $z=1$ | Boundary condition at $z=1$ |
| :---: | :---: | :---: |
| $\mu^{2} \in(-1,0)$, | Limit-circle $(\mathrm{LC})$ | $\cot (\alpha) W_{z}\left[\Psi_{\omega k}, \Psi_{1}\right]+W_{z}\left[\Psi_{\omega k}, \Psi_{2}\right]=0$ |
| $\mu^{2} \geq 0$ | Limit-point $(\mathrm{LP})$ | Not required |

## Construction of the ground state - I

Having under control the boundary conditions we can

## construct the ground state for the KG field

Differences from PAdS:

- we need to consider positive frequencies with respect to $\partial_{t}+\Omega_{\mathcal{H}} \partial_{\varphi}$, i.e. $\widetilde{\omega}=\omega-\Omega_{\mathcal{H}} k$
- we are no longer dealing with an eigenvalue problem but with a quadratic operator pencil

Repeating the same procedure as in $P A d S_{d+1}$ we obtain 3 cases
(1) $\mu^{2} \geq 0$, no boundary condition required:

$$
\omega_{2}\left(x, x^{\prime}\right)=\lim _{\epsilon \rightarrow 0^{+}} \sum_{k \in \mathbb{Z}} e^{i k\left(\varphi-\varphi^{\prime}\right)} \int_{0}^{\infty} \frac{d \widetilde{\omega}}{(2 \pi)^{2}} e^{i \widetilde{\omega}\left(t-t^{\prime}-i \epsilon\right)}\left(\frac{A}{B}-\frac{\bar{A}}{\bar{B}}\right) C \Psi_{1}(z) \Psi_{1}\left(z^{\prime}\right)
$$

with $A=\frac{\Gamma(c-1) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}, B=\frac{\Gamma(c-1) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}$ and $C=\frac{\ell^{4}}{4\left(r_{+}^{2}-r_{-}^{2}\right) \sqrt{1+\mu^{2}}}$.

## Construction of the ground state - II

$$
\begin{gathered}
\text { (2) }-1<\mu^{2}<0, \alpha \in\left(0, \alpha_{*}\right) \text { and } \alpha_{*}=\arctan \left(\frac{\Gamma(2 \beta-1)\left|\Gamma\left(1-\beta+i \frac{\ell k}{r_{+}}\right)\right|^{2}}{\Gamma(1-2 \beta)\left|\Gamma\left(\beta+i \frac{\ell k}{r_{+}}\right)\right|^{2}}\right) \\
\omega_{2}\left(x, x^{\prime}\right)= \\
\lim _{\epsilon \rightarrow 0^{+}} \sum_{k \in \mathbb{Z}} e^{i k\left(\varphi-\varphi^{\prime}\right)} \int_{0}^{\infty} \frac{d \widetilde{\omega}}{(2 \pi)^{2}} e^{i \widetilde{\omega}\left(t-t^{\prime}-i \epsilon\right)}\left(\frac{A \bar{B}-\bar{A} B}{|\cos \alpha B-\sin \alpha A|^{2}}\right) C \Psi_{1}(z) \Psi_{1}\left(z^{\prime}\right)
\end{gathered}
$$

(3) $-1<\mu^{2}<0, \alpha \in\left(\alpha_{*}, \pi\right)$ bound states $\Longrightarrow$ no ground state.

- The ground states are locally of Hadamard form.


## Towards an existence theorem - I

## Goal: Can we formulate an existence and "uniqueness" theorem?

Consider a standard static spacetime $N=\mathbb{R} \times M$ with a timelike boundary:
(1) $(N, h)$ and $\left(\partial N, \iota^{*} h\right)$ are Lorentzian manifolds with $\partial N=\mathbb{R} \times \partial M$

$$
h=-\beta d t^{2}+g \quad \beta \in C^{\infty}(M ;(0, \infty))
$$

(2) $(M, g)$ is a Riemannian manifold with boundary and of bounded geometry [Schick '01 \& Amman, Große, Schneider '16]

- there exists $(\widehat{M}, \widehat{g})$ such that $\operatorname{dim} \widehat{M}=\operatorname{dim} M$ and

$$
\left.M \subset \widehat{M} \quad \widehat{g}\right|_{M}=g
$$

- $(\widehat{M}, \widehat{g})$ is of bounded geometry, i.e.,

$$
r_{i n j}(\widehat{M})>0, \quad\left\|\nabla^{k} \widehat{R}\right\|_{L^{\infty}(\widehat{M})}<\infty \forall k \in \mathbb{N} \cup\{0\}
$$

- $\left(\partial M, \iota_{M}^{*} \widehat{g}\right)$ is of bounded geometry.


## Towards an existence theorem - II

Let $(M, g)$ be a manifold with boundary and of bounded geometry
(1) consider a geodesic atlas $\left(U_{\beta}^{\text {geo }}, \kappa_{\beta}^{\text {geo }}\right), \beta \in J, J$ being an index set
(2) consider $\left\{h_{\beta}^{g e o}\right\}_{\beta \in J}$ a partition of unity subordinated to the geodesic atlas and let $H^{s, g e o}(\widehat{M})$ be the set of $u \in \mathcal{D}^{\prime}(\widehat{M})$

$$
\|u\|_{H^{2}, \operatorname{geo}(\widehat{M})}^{2}=\sum_{\beta \in J}\left\|\left(h_{\beta}^{g e o} u\right) \mid \circ \kappa_{\beta}^{g e o}\right\|_{H^{2}\left(\mathbb{R}^{m}\right)}^{2}<\infty
$$

(3) $H^{s, g e o}(\widehat{M})$ is isomorphic to $W^{s}(\widehat{M})$ the completion of

$$
\mathcal{E}^{s}(\widehat{M})=\left\{f \in \mathcal{E}(\widehat{M}) \mid f, \nabla f \ldots \nabla^{s} f \in L^{2}(\widehat{M})\right\} \quad\|f\|^{2}=\sum_{i=0}^{s}\left\|\nabla^{i} f\right\|_{L^{2}(\widehat{M})}
$$

## Theorem (Große \& Schneider '13)

Let $(M, g)$ be a manifold with boundary and of bounded geometry and let

$$
H^{s}(M)=\left\{[u] \mid u \in H^{s}(\widehat{M}) \text { and } u \sim u^{\prime} \text { iff }\left(u-u^{\prime}\right) \mid M=0\right\}
$$

There exists a continuous surjective map $\Gamma: H^{s}(M) \rightarrow H^{s-\frac{1}{2}}(\partial M)$.

## The main problem

Let $(N, h)$ be a standard static spacetime with timelike boundary and

$$
\Phi: N \rightarrow \mathbb{R} \quad \text { such that } \quad \square_{h} \Phi=0
$$

Assume (for simplicity) $h$ to be ultrastatic, i.e. $\beta=1$.
Question: Which are the fundamental solutions for $\square_{h}$ ?
We look for $G \in \mathcal{D}^{\prime}(\stackrel{\circ}{N} \times \stackrel{\circ}{N}), \stackrel{N}{N}=N \backslash \partial N$

$$
\left\{\begin{array}{l}
\left(\square_{h} \otimes \mathbb{I}\right) G=\left(\mathbb{I} \otimes \square_{h}\right) G=0 \\
\left.G\right|_{t=t^{\prime}}=0 \text { and } \partial_{t} G=-\partial_{t^{\prime}} G=\delta_{M}
\end{array}\right.
$$

Since $\square_{h}=-\partial_{t}^{2}+\Delta_{g}$,
Answer: Characterize the self-adjoint extensions of $\Delta_{g}$

## Boundary Triples

Let $S: D(S) \subset \mathrm{H} \rightarrow \mathrm{H}$ be a closed symmetric operator.

## Definition

A boundary triple for $S^{*}$ is a triple $\left(\mathrm{h}, \gamma_{0}, \gamma_{1}\right)$ where $\gamma_{i}: D\left(S^{*}\right) \rightarrow \mathrm{h}$,

$$
\left(S^{*} f, f^{\prime}\right)_{\mathrm{H}}-\left(f, S^{*} f^{\prime}\right)_{\mathrm{H}}=\left(\gamma_{1} f, \gamma_{0} f^{\prime}\right)_{\mathrm{h}}-\left(\gamma_{0} f, \gamma_{1} f^{\prime}\right)_{\mathrm{h}},
$$

and the map $\gamma: D\left(S^{*}\right) \rightarrow \mathrm{h} \times \mathrm{h}, f \mapsto \gamma(f)=\left(\gamma_{0}(f), \gamma_{1}(f)\right)$ is surjective.

## Theorem (Grubb '68 \& Malamud '92)

Let $S$ be as above and let $\mathcal{N}_{ \pm}=\operatorname{ker}\left(S^{*} \pm i \mathbb{I}\right)$. If $\operatorname{dim} \mathcal{N}_{+}=\operatorname{dim} \mathcal{N}_{-}$, then a boundary triple ( $\mathrm{h}, \gamma_{0}, \gamma_{1}$ ) exists. Then, to any self-adjoint operator $\Theta: D(\Theta) \rightarrow \mathrm{h}$, it corresponds a self-adjoint extension of $S$ :

$$
S_{\ominus}=\left.S^{*}\right|_{\operatorname{ker}\left(\gamma_{1}-\Theta \gamma_{0}\right)}
$$

Every self-adjoint extension of $S$ is of this form.

## Application to $\triangle_{g}$

Let $(M, g)$ be a Riemannian manifold with boundary and of bounded geometry and Let $\Delta_{g}$ be the Laplace-Beltrami operator (uniformly elliptic) with

$$
D_{\max }\left(\Delta_{g}^{*}\right)=\left\{f \in L^{2}(M) \mid \Delta_{g} f \in L^{2}(M)\right\} \simeq H^{2}(M)
$$

## Theorem (Grubb '68)

Let $\Gamma_{0} \equiv \Gamma: H^{2}(M) \rightarrow H^{\frac{3}{2}}(M)$ be the Lions trace and let $\Gamma_{1}=-\Gamma \nabla_{n}$ : $H^{2}(M) \rightarrow H^{\frac{1}{2}}(M)$. Then

$$
\left(L^{2}(\partial M), \gamma_{0}, \gamma_{1}\right)
$$

is a boundary triple for $\Delta_{g}^{*}$ if $\gamma_{0}=\iota_{+} \Gamma_{0}$ and $\gamma_{1}=j_{+} \Gamma_{1}$ where

$$
\iota_{+}: H^{\frac{3}{2}}(\partial M) \rightarrow L^{2}(\partial M) \quad \text { and } \quad j_{+}: H^{\frac{1}{2}}(\partial M) \rightarrow L^{2}(\partial M)
$$

## The propagator(s) for $\square_{h}$ - I

## Assume that

(1) $(N, h)$ is a static Lorentzian spacetime with timelike boundary
(2) ( $\left.L^{2}(\partial M), \gamma_{0}, \gamma_{1}\right)$ is the boundary triple associated to $\Delta_{g}^{*}$
(3) $\Theta$ is a densely defined self-adjoint operator on $L^{2}(\partial M)$ such that $\left.\Delta_{\Theta} \doteq \Delta_{g}^{*}\right|_{D\left(\Delta_{\Theta}\right)}$, where $D\left(\Delta_{\Theta}\right) \doteq \operatorname{ker}\left(\gamma_{1}-\Theta \gamma_{0}\right)$.
(a) the spectrum of $\Delta_{\theta}$ is bounded from below

## The propagator(s) for $\square_{h}$ - II

## Theorem (C.D. \& Nicoló Drago)

The advanced and retarded fundamental solutions for $\square_{h}$ are completely determined in terms of the bidistributions $\mathcal{G}_{\ominus}^{-}=\theta\left(t-t^{\prime}\right) \mathcal{G}_{\Theta}$ and $\mathcal{G}_{\Theta}^{+}=$ $-\theta\left(t^{\prime}-t\right) \mathcal{G}_{\ominus}$, where $\mathcal{G}_{\ominus} \in \mathcal{D}^{\prime}(\stackrel{\circ}{N} \times \stackrel{\circ}{N})$ is such that, for all $f \in \mathcal{D}(\stackrel{N}{N})$

$$
\mathcal{G}_{\Theta}\left(f_{1}, f_{2}\right) \doteq \int_{\mathbb{R}^{2}} d t d t^{\prime}\left(f_{1}(t) \left\lvert\, A_{\Theta}^{-\frac{1}{2}} \sin \left[A_{\Theta}^{\frac{1}{2}}\left(t-t^{\prime}\right)\right] f_{2}\left(t^{\prime}\right)\right.\right)
$$

where $f(t) \in H^{2}(M)$ denotes the evaluation of $f$, regarded as an element of $C_{c}^{\infty}\left(\mathbb{R}, H^{\infty}(M)\right)$ and $A_{\Theta}^{-\frac{1}{2}} \sin \left[A_{\Theta}^{\frac{1}{2}}\left(t-t^{\prime}\right)\right]$ is defined exploiting the functional calculus for $A_{\ominus}$. Moreover it holds that

$$
\mathrm{G}_{\ominus}^{ \pm}: \mathcal{D}(\stackrel{N}{N}) \rightarrow C^{\infty}\left(\mathbb{R}, H_{\Theta}^{\infty}(M)\right)
$$

where $H_{\Theta}^{\infty}(M) \doteq \bigcap_{k \geq 0} D\left(\Delta_{\Theta}^{k}\right)$. In particular,

$$
\gamma_{1}\left(\mathrm{G}_{\Theta}^{ \pm} f\right)=\Theta \gamma_{0}\left(\mathrm{G}_{\Theta}^{ \pm} f\right) \quad \forall f \in C_{0}^{\infty}(\stackrel{\circ}{N})
$$

## And now?

## Outlook

- We have constructed the causal propagator and the ground state for any massive scalar field in $\mathrm{PAdS}_{d+1}$ and in $B T Z$ with arbitrary Robin-type boundary conditions,
- We have developed a general framework to discuss the existence of the fundamental solutions

To do

- Better understand the role of bound states, Mnnlv, aur numendurn +o nevimntotimall, AdS (static) spacetimes parameter.


## And now?

## Outlook

- We have constructed the causal propagator and the ground state for any massive scalar field in $\operatorname{PAdS}_{d+1}$ and in $B T Z$ with arbitrary Robin-type boundary conditions,
- We have developed a general framework to discuss the existence of the fundamental solutions

To do

- Better understand the role of bound states,
- Apply our procedure to asymptotically AdS (static) spacetimes,
- Extend our procedure to boundary conditions dependent on the spectral parameter.

