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é«v Outline of the Talk

@ AdS and BTZ: Geometric Data

@ Scalar Fields and Boundary Conditions in AdS

© Scalar Fields and Boundary Conditions in BTZ

O A glimpse on an existence theorem for fundamental solutions
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Motivations

AdS & BTZ - Reasons

@ AdSdi1 is a (d + 1)-dimensional, maximally symmetric solution of the
Einstein's equations with negative cosmological constant.

First step: Construct the fundamental solutions for 0 — m3 — £R
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Motivations

AdS - Geometry and the Poincaré chart

d+1
ds’ = —dXg — dX{ + Y _ dX?,
i=2
with
d+1
T R S R
i=2

The Poincaré chart is

1+ 22 4 —¢? —|—6"jx,-xj
2z 2z ’
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Motivations

The Poincaré patch

2 .
g = Lar +dz2 + 80dxdx], i,j=1,...,d—1
z2 /

where z > 0. Observe that

@ PAdSy,1 is conformally related to the upper half plane (%", ) with
conformal factor Q = 2.

Boundary Conditions




Motivations

The Poincaré patch

2 .
ds® = %[—dtz +d2? + 6Vdxdx), i, j=1,...,d—1

where z > 0. Observe that

@ PAdS,,1 is conformally related to the upper half plane (9", 7) with
conformal factor Q = 2.

@ The chordal distance ¢ in PAdSg11 is (£ = 1)
1
cosh(V20) = 14 ogara, opara(x,x’) = EgAB(XA — Xa)(Xs — X3),

where g"® = diag(—1,-1,1...,1), AAB=0,...,d + 1.
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Motivations

The BTZ black hole

< 0 with line element

equations with A = —/

2
ds® = —Ndt® + % + r(dp + N?dt)?,
with ) 5
VIS S VTR
N = M+€2+4r2’ N" = 2r2°
Is topologically R X | X 57, wit C (0,0
O BTZi logically R x [ x S!, with [ 0

@ It possesses an inner and an outer horizons at

@ It possesses a timelike Killing field (r > ry)
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Motivations

From AdS; to BTZ

The universal cover of AdS; can be covered with three patches:
I \/a(r) cosh(rip —r—t), X1 = +/a(r) —1lsinh(rpt —r_¢p)
Region 1) ,
a(r)sinh(ryo — r—t), Xz = /a(r) — lcosh(rit — r_yp)
for r > ry while, for r— < r <ry

Region i) = y/a(r)cosh(ryp —r_t), Xi = —+/a(r)—Lsinh(ryt —r_¢p)
& = a(r)sinh(rrp — r—t), Xz = —+y/a(r) — lcosh(rit —r_¢p)

where o(r) = rz_’rz_ p€Rand teR.

3

BTZ +— op~p+2m
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Klein-Gordon equation

Klein-Gordon field in PAdS,.;

onsider ¢ : PAdSy4+1 — R

P$ = (Opaas — my —ER)p =0 £ € Rand R= —d(d +1)
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Klein-Gordon equation

Klein-Gordon field in PAdS,.;

Consider ¢ : PAdS4+1 — R
P$ = (Opaas — my —ER)p =0 £ € Rand R= —d(d +1)

e Conformal rescaling —» & = Q%qﬁ CHAY S R obeys

2 J—
P7,¢£(D,,—%)¢:O, m2:m3+(§—d4—dl )
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Klein-Gordon equation

Klein-Gordon field in PAdS,.;

Consider ¢ : PAdS4+1 — R
Po = (DPAds—mo gR)gZﬁ_O ¢ € R and R_—d(d—l—].)

e Conformal rescaling —» & = Q%¢> CHAY S R obeys

2
P7,¢£(D,,—%)¢:O, m2:m3+(§——1R)

e P, includes a potential singular at z = 0.
e P, is not normally hyperbolic.

e Constructing solutions requires boundary conditions at z = 0.
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Klein-Gordon equation

Klein-Gordon field in PAdS,.;

Consider ¢ : PAdS4+1 — R
Po = (DPAds—mo gR)gZﬁ_O ¢ € R and R_—d(d—l—].)

e Conformal rescaling —» & = Q%¢> CHAY S R obeys

2
P7,¢£(D,,—%)¢:O, m2:m3+(§——1R)

e P, includes a potential singular at z = 0.
e P, is not normally hyperbolic.

e Constructing solutions requires boundary conditions at z = 0.

Does P, admit fundamental solutions?
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Klein-Gordon equation

Brute Force construction

We start with a mode decomposition:

o Let x = (t,x1,...,X4—1) and k = (w, k1, ..., kg—1). Then

yields (A = w? — Y91 k2)

1

—~ d? 2 ~
Pn¢204:>L¢k:<—P+%—A>¢k:0.

This is a singular Sturm-Liouville equation on (0, c0).
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - |

The most general solution of L&SK = A&SK is for A >0
®(2) = a(k)Vz (VAzZ) + b(k)vVz Y. (VA2),

where v = 1\/1+4m? > 0.... m* € [-1,00) , the BF bound.

Boundary Conditions



Sturm-Liouville Theory and Ground States

The Endpoint Classification - |

The most general solution of L&SK = >\$K is for A >0
®(2) = a(k)Vz (VAzZ) + b(k)vVz Y. (VA2),

where v = 1\/1+4m? > 0.... m* € [-1,00) , the BF bound.
Which boundary conditions are allowed? How do we implement them?
o Observe that ﬁJl,(\/Xz) Xz—0 2Y*% and ﬁYy(\/XZ) X750 z v+

Not obvious how to impose standard (Robin) boundary conditions at z = 0!

Singular Sturm-Liouville theory is the answer

Boundary Conditions




Sturm-Liouville Theory and Ground States

The Endpoint Classification - |l

Endpoint z = 0: For an operator Ly = —dizzz + V(z) wecall z=10
(i) regular (R) if 3z0 € (0, 00) such that V/(z) € L}(0, z0),

(ii) limit circle (LC) if 3zp and X € C such that all elements in the kernel of
the operator Ly — X lie in L*(0, z),

(iii) limit point (LP) if it is neither (R) nor (LC).

(c) limit point (LP) if it is not (LC).

Boundary Conditions




Sturm-Liouville Theory and Ground States

The Endpoint Classification - |l

Endpoint z = 0: For an operator Ly = —dizzz + V(z) wecall z=10
(i) regular (R) if 3z0 € (0, 00) such that V/(z) € L}(0, z0),

(ii) limit circle (LC) if 3zp and X € C such that all elements in the kernel of
the operator Ly — X lie in L*(0, z),

(iii) limit point (LP) if it is neither (R) nor (LC).

Endpoint z # 0: For an operator Ly = —:722 + V(z) we call the endpoint
(a) singular if z — oo,

(b) fimit circle (LC) if 3\ € C and z € (0, c0) such that all elements in the
kernel of the operator Ly — X lie in L?(zy, c0),

Boundary Conditions




Sturm-Liouville Theory and Ground States

Boundary Conditions - |

where W;[®, ®;] = &(z)Pi(z) — ¢'(z)Pi(z) is the Wronskian.

Boundary Conditions
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Sturm-Liouville Theory and Ground States

Boundary Conditions - |

Let Ly = —% + V(2),

@ Choose $1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

. ¢1(Z)

Z"L"o d(2)

=0 Vo(z) | Lyd=Ad, A eC.

where W,[®, ®;] = &(z)Pi(z) — ¢'(z)Pi(z) is the Wronskian.
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Sturm-Liouville Theory and Ground States

Boundary Conditions - |

Let Ly = —% + V(2),
@ Choose $1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

L @i(2) _
m e =0 Ve Lve =)o, AeC

@ Pick a second L*-solution ®3(z), linearly indep. from ®; (non unique)
© Observe that, up to a scalar multiple, if (Ly — A\)® =0, Ja € [0, ) such

that
®(z) = cosa P1(2) + sin a P2(z),

and that, for a regular endpoint at z = 0,

Boundary Conditions




Sturm-Liouville Theory and Ground States

Boundary Conditions - I

Key Observations: If we consider solutions which are L?(0, z), zo € (0, 00)
o ®1(z) always exists while ®2(z) can be found if z=0is R or LC
@ The identity with the Wronskian is always meaningful and we call

@ o = 0 (generalized) Dirichlet boundary condition,

@ a = 7 (generalized) Neumann boundary condition,

O a € (0,7m), a # % (generalized) Robin boundary condition

Boundary Conditions




Sturm-Liouville Theory and Ground States

Boundary Conditions - |lI

The fundamental pair of solutions (8;, 32) is

di(z) = @ a"Vz J(qz),

\fq VZJ-(a2), ve @),

i) = [f{yoqz —flog() , v=0.

v= %\/1 + 4m? Classification of z =0 Boundary condition at z =0

v=3 Regular (R) cot(c) ¢k(0) + ¢k(0) = 0

Boundary Conditions




The Ground States

Ground States - Mode Expansion |

oal: K 0 birds with one stone
We construct directly the two-point function of a ground state
1—d o o
Q Letwo = (22) 7 wp € D'(A7 x H'™). It holds

Boundary Conditions




The Ground States

Ground States - Mode Expansion |

two birds with one stone

We construct directly the two-point function of a ground state
1—d o o
Q Letwo = (22) 7 wp € D'(A7 x H'™). It holds

@ Consider the Fourier transform along R? 3 x. Integral kernel:

oo (o] d—3
. dw iw t—t'—ie) k\ 2 ~ /
wa (X, x') = lim — ! dk [ = Ja—3 (kr)@o,k(z,2").
e—ot ) /2 r = =

with

Boundary Conditions




The Ground States

The case with v > 1

G(X7 XI)lt:t’ =0, afG(Xa X,) = —0v G(X7xl)lt=t’ = 5(X’X/)'

e Finding @, « is a problem of eigenfunction expansion of the d-distribution (cf.
Titchmarsh 1962)

Boundary Conditions
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The Ground States

The case with v > 1

G(x, X )=y =0, 0:G(x,x") = =0y G(x, X" )|e=er = 6(x,x").

e Finding @, « is a problem of eigenfunction expansion of the d-distribution (cf.
Titchmarsh 1962)

® (i is not unique and it depends on the boundary conditions.

For v > 1 the choice is unique — Fourier-Bessel expansion

Dok = VZz’/ dqqli(q2)du(qZ)), ¢ =w’=> K.
0 =

The outcome is:

G(x,x') =

sin(y/RRF @t —t —i)) [ . (k\T

Boundary Conditions
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The Ground States

The case with v € (0,1)

e There exists two known regimes: ¢ = cota > 0 and ¢ =cota < 0

c? — 2¢q? cos(nv) + g*

§(z—2') = \/5/ dq gLn(92) ~ 7’ Jv(a2)llch(9z) — ¢ ) (aZ)] <0

or

_ [cd(q2) — Q”J— (92)][cd(92") — ¢* I (92")]
oz —2)= \/7/ 94 — 2¢q? cos(mv) + q* +

+2Vzz'cv MKy(ciz)Ky(ciz'), c>0
v

Boundary Conditions

18 / 36



The Ground States

Ground States - Mode Expansion ||

What have we learned?

@ We can construct Green operators for all values of m? and for all Robin
boundary conditions, when existent

@ In certain regimes there are bound states (bad for quantization)

@ The result is consistent with the work of Wald & Ishibashi (CMP 2003)

Boundary Conditions




The Ground States

Ground States - Mode Expansion ||

What have we learned?

@ We can construct Green operators for all values of m? and for all Robin
boundary conditions, when existent

@ In certain regimes there are bound states (bad for quantization)

@ The result is consistent with the work of Wald & Ishibashi (CMP 2003)

What is missing?
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The Ground States

From Gy to a ground state w,

oo oo d—
T
wa2(x, x) = lim / w(t= t_’e)/dk(k> Jazs (kr)2 k(z, z') =
e—0t r
0 0
%) e( k24+q2(t— —Ie o ; ,
=i k 3 (kr)@ :
) e / (7)ot

wy i is the ground state

Boundary Conditions
20



The Ground States

From Gy to a ground state w,

onn )= i,

d—
2
wlt=t'=ie) [ g ('; ) Ja—s (kr)Da(z,2) =
2

/
e |

0\8

o /Rt~ 7 ,
=i k 3 (kr)@ :
€_|>rQ+/O dgg——— N d < ) J%( r)w2,k(z,2")

One can prove that

@ w2 u(x,x’) is the integral kernel of a bi-distribution w,  in
DI X ),

O (P, ®Dwrw = (I® Py)wa,m = 0 and wo m(f, f) > 0 for all £ € C§°(H?),

© wo,m is maximally symmetric.

wy,u is the ground state

Boundary Conditions




The Ground States

From Gy to a ground state w,

onn )= i,

d—
2
wlt=t'=ie) [ g ('; ) Ja—s (kr)Da(z,2) =
2

/
e |

0\8

o /Rt~ 7 ,
=i k 3 (kr)@ :
€_|>rQ+/O dgg——— N d < ) J%( r)w2,k(z,2")

One can prove that
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© wo,m is maximally symmetric.
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The Ground States

Explicit expression for wyp - |

o Call u(x,x") = cosh® —V262(XX/)> Then u=1+ GM(’;X ) where oy is the

Minkowski geodesic distance.

Proposition [First Case]
Let v > 1 and let

. F(d+u,§—|—1/1+21/u )
e—0 F( —|—2I/)

The integral kernel of the ground state reads:
wa(x,x") = N (v, d)ws (x, X),

where N (v, d) is a normalization constant.

Boundary Conditions



The Ground States

Explicit expression for wyp - Il

Proposition [Second Case]

Let v € (0,1), for every o € [0, 7] there exists a ground state built out of

wgo‘]}ﬁ and
—4- F(d+1/7—|—1/1+21/ u_l)
D v )2
wop (X,X)—IlmouE r(1+21/)
F(&—v,i—v1-2v;ut)
2+V 2 72 ) 1 Ye
w (x,x) = I|rr}) ra=2v)
Notice that

@ There is no ground state neither for Robin boundary conditions with
o€ (2 ,7r) nor for v = 0 due to the bound states, though a causal

Boundary Conditions




The Ground States

\

%‘ Singular Structure of wgﬁ — Global Form

Theorem

Let wé?‘]H)I be the ground state for a generic, admissible boundary condition.
Then

WF(wg,l]H)l) = {(Xv kX,X/7 kX’) € T*(Hd+1)X2\{O} | (Xiv kx;t) ~ (le kX’)7 kxl>0}

where ~ entails that x2 = (x,+z) and x’ = (x’,Z') are connected by a
lightlike geodesic v in M?*!, while k., = (kx, k) is parallel transported
along v to k..

Observe that:

@ As expected, singularities are reflected at the boundary.

o In every globally hyperbollc subreglon of PAdS441 or, equivalently, of
frd+1

Boundary Conditions
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The BTZ Scenario

What about BTZ?

Pé = (Osrz — my — ER)p =0
Since 0%, 0, are Killing fields
St = 5o 3 [ dwe w0y
T ez %
where the remaining unknown satisfies

d dWk

wak(z):g(z v )+ ala)vn(z) o

being z = >+ € (0,1) and setting u? = maf> — 6¢

re—r-_

Boundary Conditions




The BTZ Scenario

The solutions

Using Froebenius method one can construct two linearly independent solutions
(B®#(—-12—-1,n€eN)

Vi(z) =27(1 - 2)’F(a,b,a+ b—c;1 - 2)
Vy(z) =2"(1-2)" " PF(c—a,c—bc—a—b+1;1-2)

where 5
’Y:—"M and 5:1(1_’_ /1+M2),
2(ri —r2) 2
and
a=3 (14 /142 —ietetbd 4 jok
b=1 (14 /142 — jg4eKinl 4 jpk
c=1—jtrlrion
+ —

Boundary Conditions



The BTZ Scenario

Endpoint Classification

We need to control the square integrability of the solutions at

z =0 (horizon) and z = 1 (conformal infinity)

o z =0 is always Limit-point

@ z =1 can be either Limit-point or Limit-circle

u? = mil? —6¢ Classification of z =1 Boundary condition at z =1
u’ e (-1,0), Limit-circle (LC) cot(a) W, [\ka, \Il1] + W, [\Ilwk, \Ilg] =0
u? >0 Limit-point (LP) Not required

Boundary Conditions 5



The BTZ Scenario

Construction of the ground state - |

construct the ground state for the KG field
Differences from PAdS:

@ we need to consider positive frequencies with respect to 0; + Qx 0,
e W=w-— ka

@ we are no longer dealing with an eigenvalue problem but with a
quadratic operator pencil
Repeating the same procedure as in PAdSy1 we obtain 3 cases

© 12 >0, no boundary condition required:

o]

. e do  jop—r—ic (A A
(4)2(X’ Xl) = 6|_I>r':)1Jr ek(‘p #') WE (o ) (E — E) C\U]_(Z)\U]_(ZI)
kEZ 0

Boundary Conditions




The BTZ Scenario

Construction of the ground state - Il

r(28—1)|r(1—pB+itk 2
Q -1<p?<0, ac(0,a.)and o, = arctan (M)

ra—2p)|r(s+i)[°
wa(x,x') =

lim eik(tp*tp’)/ dw ei@(tftlfiﬁ) (%) C\Ul(z)\ul(z/)
J |cos aB — sin aA|

Q 1< 4?<0, ac (axn) bound states => no ground state.

e The ground states are locally of Hadamard form.

Boundary Conditions




General Formulation

Towards an existence theorem - |

Consider a standard static spacetime N = R x M with a timelike boundary:
© (N, h) and (ON,*h) are Lorentzian manifolds with ON = R x OM
h=—Bdt’ +g B C*(M;(0,00))

Q@ (M, g) is a Riemannian manifold with boundary and of bounded
geometry [Schick '01 & Amman, GroBe, Schneider '16]
o there exists (M, ) such that dim M = dim M and
MCM glu=eg,
o (M, g) is of bounded geometry, i.e.,
VRl

rinj(M) > 0, < o0 Vk € NU {0},

Boundary Conditions



General Formulation

Towards an existence theorem - |l

Q consider a geodesic atlas (U5, k%), B € J, J being an index set

@ consider {h%°}se, a partition of unity subordinated to the geodesic atlas
and let H*5°(M) be the set of u € D’(I\?l)

[ullpseo iy = D I(HE )] © KE®|F2(gmy < 00
Bed

@ H¥%°(M) is isomorphic to W*(M) the completion of
E(M)={f € EM)| £, VF.V°F € B(M)} |IfI> =D IV'Fll 2
i=0

Theorem (GroBe & Schneider "13)
Let (M, g) be a manifold with boundary and of bounded geometry and let

H (M) = {[u] | u € H(M) and u ~ o' iff (u— u')|m = 0}

There exists a continuous surjective map I : H*(M) — Hez (oM.




General Formulation

The main problem

, h) be a standard static spacetime with timelike boundary and
$®: N —-R suchthat [Op® =0,
Assume (for simplicity) h to be ultrastatic, i.e. = 1.
Question: Which are the fundamental solutions for (57
We look for G € D'(N x N), N = N\ N

(0peID)G=(I0,)G=0
Gli—r =0and 0;:G = —0p G = dum

Since O = —87 + A,

Answer: Characterize the self-adjoint extensions of A,

Boundary Conditions
31



General Formulation

Boundary Triples

Definition

A boundary triple for S* is a triple (h,y0,71) where ;i : D(S*) — h,
(S"F, £ )n = (F,5"F I = (3f, 20f I = (v0f, 11 D,

and the map v : D(S*) — h x h, f — ~(f) = (70(f),11(f)) is surjective.

Theorem (Grubb '68 & Malamud '92)

Let S be as above and let Ni = ker(S* £ il). If dimNy = dimN_,
then a boundary triple (h,~o0,v1) exists. Then, to any self-adjoint operator
© : D(©) — h, it corresponds a self-adjoint extension of S:

Se = 5 |ker(m1~80)

Every self-adjoint extension of S is of this form.

Boundary Conditions
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General Formulation

Application to A,

Let (M, g) be a Riemannian manifold with boundary and of bounded geometry
and Let A,z be the Laplace-Beltrami operator (uniformly elliptic) with

Dmax(A}) = {f € L*(M) | Agf € L*(M)} =~ H*(M).

Theorem (Grubb ’'68)

Let To =T : H* (M) — H%(M) be the Lions trace and let Ty = —['V, :
H2(M) — H2(M). Then

(L*(OM), 70, 71)

is a boundary triple for A; if yo = ¢+ To and y1 = ji 1 where

Lt HE(OM) — [2(OM) and j, : H2 (OM) — L2(M).

Boundary Conditions




General Formulation

The propagator(s) for [y, - |

Assume that
@ (N, h) is a static Lorentzian spacetime with timelike boundary
@ (L*(OM),~0,71) is the boundary triple associated to A}

© O is a densely defined self-adjoint operator on L*(OM) such that
Ae = A2|D(Ae)y where D(Ae) = ker(fyl — @’yo).

O the spectrum of Ag is bounded from below

Boundary Conditions




General Formulation

The propagator(s) for [, - 1l

Theorem (C.D. & Nicolé Drago)

The advanced and retarded fundamental solutions for (1, are completely
determined in terms of the bidistributions Gg = 0(t — t')Go and G§ =
—0(t' — t)Go, where Go € D'(N x N) is such that, for all f € D(N)

Go(h, k) = /]R2 dtdt’ (ﬂ(t) A(;% sin [Aé(t —t)] fg(t')),

where f(t) € H*(M) denotes the evaluation of f, regarded as an element of
_1 1

C (R, H*(M)) and Ag ? sin [A3(t—t')] is defined exploiting the functional

calculus for Ae. Moreover it holds that

GE: D) — C(R, HE (M),

where Hg* (M) = N, D(AE). In particular,

71 (GEF) = O (Gef)  Vf e G(N).




Conclusions

And now?

Outlook

@ We have constructed the causal propagator and the ground state for any
massive scalar field in PAdSy41 and in BTZ with arbitrary Robin-type
boundary conditions,

@ We have developed a general framework to discuss the existence of the
fundamental solutions
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Conclusions

And now?

Outlook

@ We have constructed the causal propagator and the ground state for any
massive scalar field in PAdSy41 and in BTZ with arbitrary Robin-type
boundary conditions,

@ We have developed a general framework to discuss the existence of the
fundamental solutions

To do
@ Better understand the role of bound states,
@ Apply our procedure to asymptotically AdS (static) spacetimes,

@ Extend our procedure to boundary conditions dependent on the spectral
parameter.

Boundary Conditions
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