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C.D., Nicolò Drago, arXiv:1804.03434 [math-ph]

3 / 36
Boundary Conditions

N



Motivations

AdS & BTZ - Reasons
We consider the problem of the quantization of a massive scalar field on
AdSd+1/BTZ . Why?

1 AdSd+1 is a (d + 1)-dimensional, maximally symmetric solution of the
Einstein’s equations with negative cosmological constant.

2 AdSd+1 and BTZ are not globally hyperbolic

3 AdSd+1 and BTZ possess a conformal boundary,

4 Excellent prototypes to understand (A)QFT in presence of boundaries

Goal: Understand the interplay between boundary conditions and quantization

First step: Construct the fundamental solutions for �−m2
0 − ξR
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Motivations

AdS - Geometry and the Poincaré chart
AdSd+1 can be realized as the locus in Rd+2 with metric

ds2 = −dX 2
0 − dX 2

1 +
d+1∑
i=2

dX 2
i ,

with

−X 2
0 − X 2

1 +
d+1∑
i=2

X 2
i = −`2 , `2 .

= −d(d − 1)

Λ

The Poincaré chart is

X0 = `

(
1 + z2

2z
+
−t2 + δijxi xj

2z

)
,

X1 =
`

z
t ,

Xi =
`

z
xi , i = 2, ..., d ,

Xd+1 = `

(
1− z2

2z
− −t

2 + δijxi xj
2z

)
.
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Motivations

The Poincaré patch

In the Poincaré chart, PAdSd+1, the metric reads

ds2 =
`2

z2
[−dt2 + dz2 + δijdxidxj ], i , j = 1, ..., d − 1

where z > 0. Observe that

1 PAdSd+1 is conformally related to the upper half plane (H̊d+1, η) with
conformal factor Ω = z

`
.

2 The chordal distance σ in PAdSd+1 is (` = 1)

cosh(
√

2σ) = 1 + σRd+2 , σRd+2 (x , x ′)
.

=
1

2
gAB(XA − X ′A)(XB − X ′B),

where gAB = diag(−1,−1, 1..., 1), A,B = 0, ..., d + 1.

The hyperplane z = 0 in Rd+1 is the conformal boundary of PAdSd+1.
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Motivations

The BTZ black hole
It is a stationary, axi-symmetric (2+1)-dimensional solution of Einstein’s
equations with Λ = −`−2 < 0 with line element

ds2 = −N2dt2 +
dr 2

N2
+ r 2(dϕ+ Nϕdt)2,

with

N2 = −M +
r 2

`2
+

J2

4r 2
, Nϕ = − J

2r 2
.

1 BTZ is topologically R× I × S1, with I ⊂ (0,∞)

2 It possesses an inner and an outer horizons at

r 2
± =

`2

2

(
M ±

√
M2 − J2

`2

)
, |J| ≤ M`

3 It possesses a timelike Killing field (r > r+)

χ = ∂t + ΩH∂ϕ, ΩH =
r−
`r+

.
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Motivations

From AdS3 to BTZ

The BTZ black hole is locally isometric to AdS3.

The universal cover of AdS3 can be covered with three patches:

Region i)

{
X0 =

√
α(r) cosh(r+ϕ− r−t), X1 =

√
α(r)− 1 sinh(r+t − r−ϕ)

X2 =
√
α(r) sinh(r+ϕ− r−t), X3 =

√
α(r)− 1 cosh(r+t − r−ϕ)

,

for r ≥ r+ while, for r− ≤ r ≤ r+

Region ii)

{
X0 =

√
α(r) cosh(r+ϕ− r−t), X1 = −

√
α(r)− 1 sinh(r+t − r−ϕ)

X2 =
√
α(r) sinh(r+ϕ− r−t), X3 = −

√
α(r)− 1 cosh(r+t − r−ϕ)

.

where α(r)
.

= r2−r2−
r2
+−r2
−

, ϕ ∈ R and t ∈ R.

BTZ ⇐⇒ ϕ ' ϕ+ 2π
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Klein-Gordon equation

Klein-Gordon field in PAdSd+1

Consider φ : PAdSd+1 → R

Pφ = (�PAdS −m2
0 − ξR)φ = 0 ξ ∈ R and R = −d(d + 1)

• Conformal rescaling −→ Φ
.

= Ω
1−d

2 φ : H̊d+1 → R obeys

PηΦ
.

=

(
�η −

m2

z2

)
Φ = 0, m2 = m2

0 +

(
ξ − d − 1

4d
R

)
.

• Pη includes a potential singular at z = 0.

• Pη is not normally hyperbolic.

• Constructing solutions requires boundary conditions at z = 0.

Does Pη admit fundamental solutions?
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Klein-Gordon equation

Brute Force construction

We start with a mode decomposition:

Let x = (t, x1, ..., xd−1) and k = (ω, k1, ..., kd−1). Then

Φ(x , z) =

∫
Rd

ddk

(2π)
d
2

e ik·x Φ̂k(z)

yields (λ
.

= ω2 −
∑d−1

i=1 k2
i )

PηΦ = 0⇐⇒ LΦ̂k =

(
− d2

dz2
+

m2

z2
− λ
)

Φ̂k = 0.

This is a singular Sturm-Liouville equation on (0,∞).
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - I

The most general solution of LΦ̂k = λΦ̂k is for λ > 0

Φ̂k(z) = a(k)
√
zJν(
√
λz) + b(k)

√
zYν(

√
λz),

where ν = 1
2

√
1 + 4m2 ≥ 0.... m2 ∈ [− 1

4
,∞) , the BF bound.

Which boundary conditions are allowed? How do we implement them?

• Observe that
√
zJν(
√
λz) ∝z→0 zν+ 1

2 and
√
zYν(

√
λz) ∝z→0 z−ν+ 1

2

Not obvious how to impose standard (Robin) boundary conditions at z = 0!

Singular Sturm-Liouville theory is the answer
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - II

Allowed boundary conditions depend on the solutions near the endpoints:

Endpoint z = 0: For an operator LV
.

= − d2

dz2 + V (z) we call z = 0

(i) regular (R) if ∃z0 ∈ (0,∞) such that V (z) ∈ L1(0, z0),

(ii) limit circle (LC) if ∃z0 and λ ∈ C such that all elements in the kernel of
the operator LV − λ lie in L2(0, z0),

(iii) limit point (LP) if it is neither (R) nor (LC).

Endpoint z 6= 0: For an operator LV
.

= − d2

dz2 + V (z) we call the endpoint

(a) singular if z →∞,

(b) limit circle (LC) if ∃λ ∈ C and z0 ∈ (0,∞) such that all elements in the
kernel of the operator LV − λ lie in L2(z0,∞),

(c) limit point (LP) if it is not (LC).
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Sturm-Liouville Theory and Ground States

Boundary Conditions - I

Goal: Implement boundary conditions for non regular endpoints

Let LV
.

= − d2

dz2 + V (z),

1 Choose Φ1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

lim
z→0

Φ1(z)

Φ(z)
= 0 ∀Φ(z) | LV Φ = λΦ, λ ∈ C.

2 Pick a second L2-solution Φ2(z), linearly indep. from Φ1 (non unique)

3 Observe that, up to a scalar multiple, if (LV − λ)Φ = 0, ∃α ∈ [0, π) such
that

Φ(z) = cosαΦ1(z) + sinαΦ2(z),

and that, for a regular endpoint at z = 0,

cosαΦ(0) + sinαΦ′(0) = 0⇐⇒ cosαWz [Φ,Φ1] + sinαWz [Φ,Φ2] = 0

where Wz [Φ,Φi ] = Φ(z)Φ′i (z)− Φ′(z)Φi (z) is the Wronskian.
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Sturm-Liouville Theory and Ground States

Boundary Conditions - II

Key Observations: If we consider solutions which are L2(0, z0), z0 ∈ (0,∞)

Φ1(z) always exists while Φ2(z) can be found if z = 0 is R or LC

The identity with the Wronskian is always meaningful and we call

1 α = 0 (generalized) Dirichlet boundary condition,
2 α = π

2
(generalized) Neumann boundary condition,

3 α ∈ (0, π), α 6= π
2

(generalized) Robin boundary condition
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Sturm-Liouville Theory and Ground States

Boundary Conditions - III

Recall that we consider L = − d2

dz2 + m2

z2 and λ = q2 .
= ω2 −

d−1∑
i=1

k2
i .

The fundamental pair of solutions (Φ̂1
k , Φ̂

2
k) is

Φ̂1
k(z) =

√
π

2
q−ν
√
z Jν(qz) ,

Φ̂2
k(z) =


−
√
π

2
qν
√
z J−ν(qz) , ν ∈ (0, 1) ,

−
√
π

2

√
z

[
Y0(qz)− 2

π
log(q)

]
, ν = 0 .

ν = 1
2

√
1 + 4m2 Classification of z = 0 Boundary condition at z = 0

ν = 1
2

Regular (R) cot(α) Φ̂k(0) + Φ̂′k(0) = 0

ν ∈ [0, 1), ν 6= 1
2

Limit-circle (LC) − cot(α)Wz

[
Φ̂k , Φ̂

1
k

]
+ Wz

[
Φ̂k , Φ̂

2
k

]
= 0

ν ∈ [1,∞) Limit-point (LP) Not required
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The Ground States

Ground States - Mode Expansion I

Goal: Kill two birds with one stone

We construct directly the two-point function of a ground state

1 Let ω2,H
.

= (zz ′)
1−d

2 ω2 ∈ D′(H̊d+1 × H̊d+1). It holds

(Pη ⊗ I)GH = (I⊗ Pη)GH = 0.

2 Consider the Fourier transform along Rd 3 x . Integral kernel:

ω2,H(x , x ′) = lim
ε→0+

∞∫
0

dω√
2π

e iω(t−t′−iε)

∞∫
0

dk

(
k

r

) d−3
2

J d−3
2

(kr)ω̂2,k(z , z ′).

with

(L⊗ I)ω̂2,k = (I⊗ L)ω̂2,k = λω̂2,k , L = − d2

dz2
+

m2

z2
.
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The Ground States

The case with ν ≥ 1
In order to construct ω̂2,k , we need that iG(x , x ′)

.
= ω2,H(x , x ′)− ω2,H(x ′, x),

G(x , x ′)|t=t′ = 0, ∂tG(x , x ′) = −∂t′G(x , x ′)|t=t′ = δ(x , x ′).

• Finding ω̂2,k is a problem of eigenfunction expansion of the δ-distribution (cf.
Titchmarsh 1962)

• ω̂2,k is not unique and it depends on the boundary conditions.

For ν ≥ 1 the choice is unique – Fourier-Bessel expansion

ω̂2,k =
√
zz ′
∫ ∞

0

dq qJν(qz)Jν(qz ′), q2 = ω2 −
d−1∑
i=1

k2
i .

The outcome is:

G(x , x ′) =

lim
ε→0+

√
2zz ′

∞∫
0

dq q
sin(
√

k2 + q2(t − t′ − iε))√
π(k2 + q2)

∞∫
0

dk

(
k

r

) d−3
2

J d−3
2

(kr)Jν(qz)Jν(qz ′).
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The Ground States

The case with ν ∈ (0, 1)
In this regime, Robin-like boundary conditions can be imposed

• There exists two known regimes: c = cotα ≥ 0 and c = cotα < 0

δ(z−z ′) =
√
zz ′

∞∫
0

dq q
[cJν(qz)− q2νJ−ν(qz)][cJν(qz ′)− q2νJ−ν(qz ′)]

c2 − 2cq2ν cos(πν) + q4ν
, c ≤ 0

or

δ(z − z ′) =
√
zz ′

∞∫
0

dq q
[cJν(qz)− q2νJ−ν(qz)][cJν(qz ′)− q2νJ−ν(qz ′)]

c2 − 2cq2ν cos(πν) + q4ν
+

+2
√
zz ′c

1
ν

sin(πν)

πν
Kν(c

1
2ν z)Kν(c

1
2ν z ′), c > 0

For certain Robin boundary conditions, there are bound states!
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The Ground States

Ground States - Mode Expansion II

What have we learned?

We can construct Green operators for all values of m2 and for all Robin
boundary conditions, when existent

In certain regimes there are bound states (bad for quantization)

The result is consistent with the work of Wald & Ishibashi (CMP 2003)

What is missing?
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The Ground States

From GH to a ground state ω2,H
From the form of GH we can construct

ω2,H(x , x ′) = lim
ε→0+

∞∫
0

dω√
2π

e iω(t−t′−iε)

∞∫
0

dk

(
k

r

) d−3
2

J d−3
2

(kr)ω̂2,k(z , z ′) =

= lim
ε→0+

∫ ∞
0

dq q
e i(
√

k2+q2(t−t′−iε))√
2π(k2 + q2)

∞∫
0

dk

(
k

r

) d−3
2

J d−3
2

(kr)ω̂2,k(z , z ′).

One can prove that

1 ω2,H(x , x ′) is the integral kernel of a bi-distribution ω2,H in
D′(H̊d+1 × H̊d+1),

2 (Pη⊗ I)ω2,H = (I⊗Pη)ω2,H = 0 and ω2,H(f , f ) ≥ 0 for all f ∈ C∞0 (H̊d+1),

3 ω2,H is maximally symmetric.

ω2,H is the ground state
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The Ground States

Explicit expression for ω2,H - I

We can write ω2,H in terms of special functions:

Call u(x , x ′) = cosh2

(√
2σ(x,x′)

2

)
. Then u = 1 + σM(x,x′)

2zz′ where σM is the

Minkowski geodesic distance.

Proposition [First Case]
Let ν ≥ 1 and let

ωD
2 (x , x ′) = lim

ε→0
u
− d

2
−ν

ε

F ( d
2

+ ν, 1
2

+ ν, 1 + 2ν; u−1
ε )

Γ(1 + 2ν)

The integral kernel of the ground state reads:

ω2,H(x , x ′) = N (ν, d)ωD
2 (x , x ′),

where N (ν, d) is a normalization constant.
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The Ground States

Explicit expression for ω2,H - II

Proposition [Second Case]
Let ν ∈ (0, 1), for every α ∈ [0, π

2
] there exists a ground state built out of

ω
(α)
2,H and

ωD
2 (x , x ′) = lim

ε→0
u
− d

2
−ν

ε

F ( d
2

+ ν, 1
2

+ ν, 1 + 2ν; u−1
ε )

Γ(1 + 2ν)

ωN
2 (x , x ′) = lim

ε→0
u
− d

2
+ν

ε

F ( d
2
− ν, 1

2
− ν, 1− 2ν; u−1

ε )

Γ(1− 2ν)

Notice that

There is no ground state neither for Robin boundary conditions with
α ∈ (π

2
, π) nor for ν = 0 due to the bound states, though a causal

propagator exists.
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The Ground States

Singular Structure of ω
(α)
2,H – Global Form

Theorem
Let ω

(α)
2,H be the ground state for a generic, admissible boundary condition.

Then

WF (ω
(α)
2,H) = {(x , kx , x ′, kx′) ∈ T ∗(H̊d+1)x2\{0} | (x±, kx±) ∼ (x ′, kx′), kx.0}

where ∼ entails that x± = (x ,±z) and x ′ = (x ′, z ′) are connected by a
lightlike geodesic γ in Md+1, while kx± = (kx ,±kz) is parallel transported
along γ to kx′ .

Observe that:

As expected, singularities are reflected at the boundary.

In every globally hyperbolic subregion of PAdSd+1 or, equivalently, of
H̊d+1, the WF is of Hadamard type.
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The BTZ Scenario

What about BTZ?
Consider φ : BTZ → R

Pφ = (�BTZ −m2
0 − ξR)φ = 0

Since ∂t , ∂ϕ are Killing fields

φ(t, r , ϕ) =
1

2π

∑
k∈Z

∫
R

dω e−iωt+ikϕΨωk(r)

where the remaining unknown satisfies

LΨωk(z) =
d

dz

(
z
dΨωk

dz

)
+ q(z)Ψωk(z) = 0,

being z =
r2−r2

+

r2−r2
−
∈ (0, 1) and setting µ2 = m2

0`
2 − 6ξ

q(z) =
1

4(1− z)

[
`2(ω`r+ − kr−)2

(r 2
+ − r 2

−)z
− `2(ω`r− − kr+)2

(r 2
+ − r 2

−)
− µ2

1− z

]
,
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The BTZ Scenario

The solutions

Using Froebenius method one can construct two linearly independent solutions
(µ2 6= (n − 1)2 − 1, n ∈ N){

Ψ1(z) = zγ(1− z)βF (a, b, a + b − c; 1− z)
Ψ2(z) = zγ(1− z)1−βF (c − a, c − b, c − a− b + 1; 1− z)

where

γ = −i `
2r+(ω − kΩH)

2(r 2
+ − r 2

−)
and β =

1

2

(
1 +

√
1 + µ2

)
,

and 
a = 1

2

(
1 +

√
1 + µ2 − i` `(ω−kΩH)

r+−r−
+ i` k

r+

)
b = 1

2

(
1 +

√
1 + µ2 − i` `(ω−kΩH)

r++r−
+ i` k

r+

)
c = 1− i `

2r+(ω−kΩH)

r2
+−r2
−
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The BTZ Scenario

Endpoint Classification

We need to control the square integrability of the solutions at

z = 0 (horizon) and z = 1 (conformal infinity)

z = 0 is always Limit-point

z = 1 can be either Limit-point or Limit-circle

µ2 = m2
0`

2 − 6ξ Classification of z = 1 Boundary condition at z = 1

µ2 ∈ (−1, 0), Limit-circle (LC) cot(α)Wz

[
Ψωk ,Ψ1

]
+ Wz

[
Ψωk ,Ψ2

]
= 0

µ2 ≥ 0 Limit-point (LP) Not required
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The BTZ Scenario

Construction of the ground state - I
Having under control the boundary conditions we can

construct the ground state for the KG field

Differences from PAdS :

we need to consider positive frequencies with respect to ∂t + ΩH∂ϕ,
i.e. ω̃ = ω − ΩHk

we are no longer dealing with an eigenvalue problem but with a
quadratic operator pencil

Repeating the same procedure as in PAdSd+1 we obtain 3 cases

1 µ2 ≥ 0, no boundary condition required:

ω2(x , x ′) = lim
ε→0+

∑
k∈Z

e ik(ϕ−ϕ′)
∞∫

0

dω̃

(2π)2
e iω̃(t−t′−iε)

(
A

B
− Ā

B̄

)
CΨ1(z)Ψ1(z ′)

with A = Γ(c−1)Γ(c−a−b)
Γ(c−a)Γ(c−b)

, B = Γ(c−1)Γ(a+b−c)
Γ(a)Γ(b)

and C = `4

4(r2
+−r2
−)
√

1+µ2
.
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The BTZ Scenario

Construction of the ground state - II

2 −1 < µ2 < 0, α ∈ (0, α∗) and α∗ = arctan

(
Γ(2β−1)

∣∣∣Γ(1−β+i `k
r+

)
∣∣∣2

Γ(1−2β)
∣∣∣Γ(β+i `k

r+
)
∣∣∣2
)

ω2(x , x ′) =

lim
ε→0+

∑
k∈Z

e ik(ϕ−ϕ′)
∞∫

0

dω̃

(2π)2
e iω̃(t−t′−iε)

(
AB̄ − ĀB

|cosαB − sinαA|2

)
CΨ1(z)Ψ1(z ′)

3 −1 < µ2 < 0, α ∈ (α∗, π) bound states =⇒ no ground state.

• The ground states are locally of Hadamard form.
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General Formulation

Towards an existence theorem - I

Goal: Can we formulate an existence and “uniqueness” theorem?

Consider a standard static spacetime N = R×M with a timelike boundary:

1 (N, h) and (∂N, ι∗h) are Lorentzian manifolds with ∂N = R× ∂M

h = −βdt2 + g β ∈ C∞(M; (0,∞))

2 (M, g) is a Riemannian manifold with boundary and of bounded
geometry [Schick ’01 & Amman, Große, Schneider ’16]

there exists (M̂, ĝ) such that dim M̂ = dimM and

M ⊂ M̂ ĝ |M = g ,

(M̂, ĝ) is of bounded geometry, i.e.,

rinj(M̂) > 0, ‖∇k R̂‖L∞(M̂) <∞ ∀k ∈ N ∪ {0},

(∂M, ι∗M ĝ) is of bounded geometry.
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General Formulation

Towards an existence theorem - II
Let (M, g) be a manifold with boundary and of bounded geometry

1 consider a geodesic atlas (Ugeo
β , κgeo

β ), β ∈ J, J being an index set

2 consider {hgeo
β }β∈J a partition of unity subordinated to the geodesic atlas

and let Hs,geo(M̂) be the set of u ∈ D′(M̂)

‖u‖2
H2,geo (M̂)

=
∑
β∈J

‖(hgeo
β u)| ◦ κgeo

β ‖
2
H2(Rm) <∞

3 Hs,geo(M̂) is isomorphic to W s(M̂) the completion of

E s(M̂) = {f ∈ E(M̂) | f ,∇f ...∇s f ∈ L2(M̂)} ‖f ‖2 =
s∑

i=0

‖∇i f ‖L2(M̂)

Theorem (Große & Schneider ’13)
Let (M, g) be a manifold with boundary and of bounded geometry and let

Hs(M) = {[u] | u ∈ Hs(M̂) and u ∼ u′ iff (u − u′)|M = 0}

There exists a continuous surjective map Γ : Hs(M)→ Hs− 1
2 (∂M).
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General Formulation

The main problem

Let (N, h) be a standard static spacetime with timelike boundary and

Φ : N → R such that �hΦ = 0,

Assume (for simplicity) h to be ultrastatic, i.e. β = 1.

Question: Which are the fundamental solutions for �h?

We look for G ∈ D′(N̊ × N̊), N̊ = N \ ∂N{
(�h ⊗ I)G = (I⊗�h)G = 0
G |t=t′ = 0 and ∂tG = −∂t′G = δM

Since �h = −∂2
t + ∆g ,

Answer: Characterize the self-adjoint extensions of ∆g
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General Formulation

Boundary Triples

Let S : D(S) ⊂ H→ H be a closed symmetric operator.

Definition
A boundary triple for S∗ is a triple (h, γ0, γ1) where γi : D(S∗)→ h,

(S∗f , f ′)H − (f , S∗f ′)H = (γ1f , γ0f
′)h − (γ0f , γ1f

′)h,

and the map γ : D(S∗)→ h× h, f 7→ γ(f ) = (γ0(f ), γ1(f )) is surjective.

Theorem (Grubb ’68 & Malamud ’92)
Let S be as above and let N± = ker(S∗ ± iI). If dimN+ = dimN−,
then a boundary triple (h, γ0, γ1) exists. Then, to any self-adjoint operator
Θ : D(Θ)→ h, it corresponds a self-adjoint extension of S :

SΘ = S∗|ker(γ1−Θγ0)

Every self-adjoint extension of S is of this form.
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General Formulation

Application to ∆g

Let (M, g) be a Riemannian manifold with boundary and of bounded geometry
and Let ∆g be the Laplace-Beltrami operator (uniformly elliptic) with

Dmax(∆∗g ) = {f ∈ L2(M) | ∆g f ∈ L2(M)} ' H2(M).

Theorem (Grubb ’68)
Let Γ0 ≡ Γ : H2(M) → H

3
2 (M) be the Lions trace and let Γ1 = −Γ∇n :

H2(M)→ H
1
2 (M). Then

(L2(∂M), γ0, γ1)

is a boundary triple for ∆∗g if γ0 = ι+Γ0 and γ1 = j+Γ1 where

ι+ : H
3
2 (∂M)→ L2(∂M) and j+ : H

1
2 (∂M)→ L2(∂M).
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General Formulation

The propagator(s) for �h - I

Assume that

1 (N, h) is a static Lorentzian spacetime with timelike boundary

2 (L2(∂M), γ0, γ1) is the boundary triple associated to ∆∗g

3 Θ is a densely defined self-adjoint operator on L2(∂M) such that
∆Θ

.
= ∆∗g |D(∆Θ), where D(∆Θ)

.
= ker(γ1 −Θγ0).

4 the spectrum of ∆Θ is bounded from below
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General Formulation

The propagator(s) for �h - II

Theorem (C.D. & Nicoló Drago)
The advanced and retarded fundamental solutions for �h are completely
determined in terms of the bidistributions G−Θ = θ(t − t′)GΘ and G+

Θ =

−θ(t′ − t)GΘ, where GΘ ∈ D′(N̊ × N̊) is such that, for all f ∈ D(N̊)

GΘ(f1, f2)
.

=

∫
R2

dtdt′
(
f1(t)

∣∣∣∣A− 1
2

Θ sin
[
A

1
2
Θ(t − t′)

]
f2(t′)

)
,

where f (t) ∈ H2(M) denotes the evaluation of f , regarded as an element of

C∞c (R,H∞(M)) and A
− 1

2
Θ sin

[
A

1
2
Θ(t−t′)] is defined exploiting the functional

calculus for AΘ. Moreover it holds that

G±Θ : D(N̊)→ C∞(R,H∞Θ (M)) ,

where H∞Θ (M)
.

=
⋂

k≥0 D(∆k
Θ). In particular,

γ1

(
G±Θ f

)
= Θγ0

(
G±Θ f

)
∀f ∈ C∞0 (N̊) .
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Conclusions

And now?

Outlook

We have constructed the causal propagator and the ground state for any
massive scalar field in PAdSd+1 and in BTZ with arbitrary Robin-type
boundary conditions,

We have developed a general framework to discuss the existence of the
fundamental solutions

To do

Better understand the role of bound states,

Apply our procedure to asymptotically AdS (static) spacetimes,

Extend our procedure to boundary conditions dependent on the spectral
parameter.
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