Renormalization of QFT on Riemannian manifolds

Quantum fields, scattering and spacetime horizons: mathematical challenges

Nguyen Viet Dang¹ Bin Zhang²

¹Université Lyon 1

²Sichuan university

イロト イポト イヨト イヨト

Euclidean QFT.

(M, g) closed compact Riemannian manifold dimension d, volume form dv(x), $-\Delta$ Laplace Beltrami.

Sequence $\sigma = \{0 = \lambda_0 < \lambda_1 \leqslant \cdots \leqslant \lambda_k \to +\infty\}$ and $(e_{\lambda})_{\lambda \in \sigma}$ eigenfunctions

$$-\Delta e_{\lambda} = \lambda e_{\lambda}.$$

Green kernel :

$$P(x,y) = \sum_{\lambda \in \sigma, \lambda > 0} \lambda^{-1} e_{\lambda}(x) e_{\lambda}(y).$$

The Gaussian Free Field.

Generalizes Brownian motion. **Explicit realization** of *GFF*. For $(c_{\lambda})_{\lambda}$ gaussian centered i.i.d, random series :

$$\phi = \sum_{\lambda \in \sigma \setminus \{0\}} \frac{c_{\lambda}}{\sqrt{\lambda}} e_{\lambda}.$$

Intuitively random Gaussian vector in some ∞ dim space.

・ロト ・回ト ・ヨト ・ヨト

DGFF pictures not from me.

Like Brownian motion, obtained as scaling limit.

Random distributions.

 ϕ in L^2 ?

$$\begin{split} \mathbb{E}\left(\|\phi\|_{L^{2}(M)}^{2}\right) &= \mathbb{E}\left(\left\langle\sum \frac{c_{\lambda}}{\sqrt{\lambda}}e_{\lambda},\sum \frac{c_{\lambda}}{\sqrt{\lambda}}e_{\lambda}\right\rangle\right) \\ &= \sum_{\lambda}\frac{1}{\lambda}\underbrace{\mathbb{E}(c_{\lambda}^{2})\left\langle e_{\lambda},e_{\lambda}\right\rangle}_{=1} = \sum_{\lambda}\frac{1}{\lambda}. \end{split}$$

Dimension *d* Weyl's law $\lambda_n \sim Cn^{\frac{2}{d}}$ divergent when $d \ge 2$.

э

・ロン ・四 と ・ ヨ と ・ ヨ と

Random distributions.

 ϕ in L^2 ?

$$\begin{split} \mathbb{E}\left(\|\phi\|_{L^{2}(M)}^{2}\right) &= \mathbb{E}\left(\left\langle\sum_{\lambda}\frac{c_{\lambda}}{\sqrt{\lambda}}e_{\lambda},\sum_{\lambda}\frac{c_{\lambda}}{\sqrt{\lambda}}e_{\lambda}\right\rangle\right) \\ &= \sum_{\lambda}\frac{1}{\lambda}\underbrace{\mathbb{E}(c_{\lambda}^{2})\langle e_{\lambda},e_{\lambda}\rangle}_{=1} = \sum_{\lambda}\frac{1}{\lambda}. \end{split}$$

Dimension *d* Weyl's law $\lambda_n \sim Cn^{\frac{2}{d}}$ divergent when $d \ge 2$. Random distribution need to smear the field ϕ . For $h \in C^{\infty}(M)$, $\phi(h)$ Gaussian random variable.

Almost surely in negative Sobolev $H^{s}(M), \forall s < 1 - \frac{d}{2}$.

・ロト ・回ト ・ヨト ・ヨト

Random distributions.

 ϕ in L^2 ?

$$\begin{split} \mathbb{E}\left(\|\phi\|_{L^{2}(M)}^{2}\right) &= \mathbb{E}\left(\left\langle\sum_{\lambda}\frac{c_{\lambda}}{\sqrt{\lambda}}e_{\lambda},\sum_{\lambda}\frac{c_{\lambda}}{\sqrt{\lambda}}e_{\lambda}\right\rangle\right) \\ &= \sum_{\lambda}\frac{1}{\lambda}\underbrace{\mathbb{E}(c_{\lambda}^{2})\langle e_{\lambda},e_{\lambda}\rangle}_{=1} = \sum_{\lambda}\frac{1}{\lambda}. \end{split}$$

Dimension *d* Weyl's law $\lambda_n \sim Cn^{\frac{2}{d}}$ divergent when $d \ge 2$. Random distribution need to smear the field ϕ . For $h \in C^{\infty}(M)$, $\phi(h)$ Gaussian random variable.

Almost surely in negative Sobolev $H^{s}(M), \forall s < 1 - \frac{d}{2}$.

$$\mathbb{E}\left(\phi(h_1)\phi(h_2)\right) = \int_{M\times M} P(x,y)h_1(x)h_2(y)dv(x)dv(y).$$

P covariance of GFF measure $\int [d\phi] e^{-\frac{1}{2}\langle \phi, (-\Delta)\phi \rangle}$ on $\mathcal{D}'(M)$.

・ロン ・四人 ・モン ・モン 三日

Quantum field theory in curved space-times philosophy.

QFT curved space-times : metric g classical, interacting with scalar quantum field ϕ . Discuss two problems with toy model : renormalization and covariance.

イロト イポト イヨト イヨト

Toy model and renormalization problem.

External potential $V \in C^{\infty}(M), V \ge 0$, action $S = \int_{M} \left(\phi(-\Delta)\phi + \underbrace{V(x)\phi^{2}(x)}_{} \right) dv(x) \text{ where } V(x)\phi^{2}(x) \text{ is an interaction term}$ of ϕ with V.

Toy model and renormalization problem.

External potential
$$V \in C^{\infty}(M), V \ge 0$$
, action

$$S = \int_{M} \left(\phi(-\Delta)\phi + \underbrace{V(x)\phi^{2}(x)}_{\text{of }} \right) dv(x) \text{ where } V(x)\phi^{2}(x) \text{ is an interaction term}$$
of ϕ with V . Meaning of :

$$Z(V) = \int [d\phi] exp\left(-\frac{1}{2}\int_{M}\phi(-\Delta)\phi + V\phi^{2}dv\right)$$

Also when $V = \text{constant } \lambda$.

Some problems of QFT can be understood with probability language. Since $\phi \in H^{<0}(M)$, ϕ^2 **ill-defined** and surely not random variable valued in $\mathcal{D}'(M)$. Renormalization problem.

イロト 不得 トイヨト イヨト

Invariants.

Topological Field Theories

closed manifold
$$M \mapsto$$
 partition function $Z(M) \sim \sum_{n=0}^{\infty} h^n \underbrace{\mathcal{F}_n(M)}_{n}$.

 $F_n(M)$ topological invariant independent of C^{∞} structure of M.

Flat space : Belkale–Brosnan, Bogner–Weinzierl show Feynman amplitudes are **special numbers** i.e. **periods**.

イロト イポト イヨト イヨト

Invariants.

Topological Field Theories

closed manifold
$$M \mapsto$$
 partition function $Z(M) \sim \sum_{n=0}^{\infty} h^n \underbrace{F_n(M)}_{n}$.

 $F_n(M)$ topological invariant independent of C^{∞} structure of M.

Flat space : Belkale–Brosnan, Bogner–Weinzierl show Feynman amplitudes are **special numbers** i.e. **periods**.

On curved space, QFT numbers could be anything.

More structure on *M*, complex, Riemannian, bundles $E \mapsto M$, how to get invariants of corresponding structures?

But $Z(\lambda)$ isometry invariant of metric g i.e. depend only on Riemannian structure. What information on (M, g) contained in $Z(\lambda)$?

イロト イポト イヨト イヨト

Work in progress.

Definition (Moduli space of metrics)

 $\mathcal{R}(M) = C^{\infty}$ Metrics/ C^{∞} Diffeos. $[g] \in \mathcal{R}(M)$ called isometry class of metric.

Proposition (Observation)

(M, g) Riemannian surface.

$$\int_{M} : \phi^{2} : d\mathbf{v} = \lim_{\varepsilon \to 0} \int_{M} \phi_{\varepsilon}^{2} - \mathbb{E}\left(\phi_{\varepsilon}^{2}\right) d\mathbf{v}$$
(1)

where $\phi_{\varepsilon} = e^{\varepsilon \Delta} \phi$. Then $\int_{M} : \phi^2 : dv$ well defined random variable whose law gives Euler characteristic $\chi(M)$ and length spectrum of M.

Work in progress.

Definition (Moduli space of metrics)

 $\mathcal{R}(M) = C^{\infty}$ Metrics/ C^{∞} Diffeos. $[g] \in \mathcal{R}(M)$ called isometry class of metric.

Proposition (Observation)

(M,g) Riemannian surface.

$$\int_{M} : \phi^{2} : d\mathbf{v} = \lim_{\varepsilon \to 0} \int_{M} \phi_{\varepsilon}^{2} - \mathbb{E}\left(\phi_{\varepsilon}^{2}\right) d\mathbf{v}$$
(1)

where $\phi_{\varepsilon} = e^{\varepsilon \Delta} \phi$. Then $\int_{M} : \phi^2 : dv$ well defined random variable whose law gives Euler characteristic $\chi(M)$ and lenght spectrum of M. Finite dimensional $N \subset \mathcal{R}(M)$ of metrics with $K < -\varepsilon < 0$. $I \subset \mathcal{R}(M)$ subset of metric class with same given partition function

$$Z(\lambda) = \left\langle \exp\left(-\lambda \int_{M} : \phi^2 :\right) \right\rangle_{g_0}.$$

Then $I \cap N$ finite.

Factorize.

$$Z(V) = \int [d\phi] exp\left(-\frac{1}{2}\int_{M}\phi(-\Delta)\phi + V\phi^{2}dv\right)$$
$$= \underbrace{\det\left(-\Delta\right)^{-\frac{1}{2}}}_{\text{ill-defined}} \det\left(I + (-\Delta)^{-1}V\right)^{-\frac{1}{2}}$$
where $\det\left(-\Delta\right)^{-\frac{1}{2}} = \underbrace{\left(\prod_{\lambda \in \sigma \setminus \{0\}}\lambda\right)^{-\frac{1}{2}}}_{\text{infinite product.}}$

イロト イロト イヨト イヨト 二日

Zeta regularization QFT (Ray–Singer 1971, Hawking 1975).

Introduce spectral zeta function

$$\zeta(s) = \sum_{\lambda \in \sigma, \lambda > 0} \lambda^{-s}$$

・ロト ・回ト ・ヨト ・ヨト

Zeta regularization QFT (Ray–Singer 1971, Hawking 1975).

Introduce spectral zeta function

$$\zeta(s) = \sum_{\lambda \in \sigma, \lambda > 0} \lambda^{-s}$$

Theorem (Minakshisundaram-Pleijel, Seeley)

 ζ has analytic continuation as meromorphic function of s without poles at s = 0.

< ロト < 同ト < ヨト < ヨト

Zeta regularization QFT (Ray–Singer 1971, Hawking 1975).

Introduce spectral zeta function

$$\zeta(s) = \sum_{\lambda \in \sigma, \lambda > 0} \lambda^{-s}$$

Theorem (Minakshisundaram-Pleijel, Seeley)

 ζ has analytic continuation as meromorphic function of s without poles at s = 0.

Therefore

Definition

$$\sum_{\lambda \in \sigma, \lambda > 0} \log(\lambda) = -\zeta'(0)$$

well-defined and so is $\det(-\Delta)^{-\frac{1}{2}}$.

Divergences in operator theory.

Dimension $d \ge 2$, $(-\Delta)^{-1}V \in \Psi^{-2}(M)$ compact but **not trace class**.

Divergences in operator theory.

Dimension $d \ge 2$, $(-\Delta)^{-1}V \in \Psi^{-2}(M)$ compact but **not trace class**. If $n > \frac{d}{2}$, $((-\Delta)^{-1}V)^n \in \Psi^{-2n}(M)$ trace class.

< ロ > < 同 > < 回 > < 回 > < □ > <

Divergences in operator theory.

Dimension $d \ge 2$, $(-\Delta)^{-1}V \in \Psi^{-2}(M)$ compact but **not trace class**. If $n > \frac{d}{2}$, $((-\Delta)^{-1}V)^n \in \Psi^{-2n}(M)$ **trace class**. Hence

<ロ> (四) (四) (三) (三) (三) (三)

Traces to Feynman graphs.

Definition (Feynman rules)

G graph.

$$t_G = \prod_{e \in E(G)} \underbrace{P(x_{i(e)}, x_{j(e)})}_{Green \ kernel}$$
(2)

< ロト < 同ト < ヨト < ヨト

where the product is over the edges e in G, (i(e), j(e)) vertices connected by edge e.

$$\log \det(1 + (-\Delta)^{-1}V) = \sum_{G_n} \frac{(-1)^{n+1}}{n} \int_{M^n} t_{G_n}(x_1, \dots, x_n) V(x_1) \dots V(x_n) dv(x_1) \dots dv(x_n)$$

where G_n polygon with *n*-vertices.

Local renormalization II.

$(-\Delta)^{-s}, s \in \mathbb{C}$ well-defined (Seeley 1966) and P_s corresponding Green kernel.

э

イロト イヨト イヨト イヨト

Local renormalization II.

 $(-\Delta)^{-s}$, $s \in \mathbb{C}$ well-defined (Seeley 1966) and P_s corresponding Green kernel. If d = (2, 3), **regularize** tadpole graphs. If d = 4 regularize the tadpole and the 2-vertex polygon.

イロト 不得 トイヨト イヨト

Local renormalization II.

 $(-\Delta)^{-s}$, $s \in \mathbb{C}$ well-defined (Seeley 1966) and P_s corresponding Green kernel. If d = (2,3), **regularize** tadpole graphs. If d = 4 regularize the tadpole and the 2-vertex polygon.

Analytic continuation of $TR\left(\left((-\Delta)^{-s}V\right)^{n}\right)$.

Local renormalization III : extraction.

۲

When d = 4, renormalize only the tadpole and 2-gon by extracting the singular parts :

$$\boxed{TR\left(\Delta^{-s}V\right) = \frac{1}{96\pi^2(s-1)}\int_M R_{\text{scal}}V(x) + O(1)}$$

イロト イポト イヨト イヨト

Local renormalization III : extraction.

When d = 4, renormalize only the tadpole and 2-gon by extracting the singular parts :

$$TR\left(\Delta^{-s}V
ight)=rac{1}{96\pi^2(s-1)}\int_M R_{
m scal}V(x)+O(1)$$

$$TR\left(\Delta^{-s}V\Delta^{-s}V\right) = TR\left(\Delta^{-2s}V^{2}\right) + TR(\underbrace{\Delta^{-s}V[\Delta^{-s},V]}_{\in\Psi^{-4s-1}(M)})$$

by cyclicity of trace, find :

۲

$$TR\left(\Delta^{-s}V\Delta^{-s}V\right)=rac{1}{32\pi^2}rac{1}{2s-2}\int_M dx V^2(x)+O(1).$$

Local renormalization IV : subtraction of **local** counterterms.

When dim(M) = 4, renormalization by local subtraction of counterterms :

$$\lim_{s \to 1} \log \left(\int [d\phi] \exp \left(-\frac{1}{2} \int_M \phi(-\Delta)\phi + V(x)\phi^2(x) - \underbrace{\frac{1}{s-1} \left(\frac{R_{scal}V(x)}{96\pi^2} - \frac{V^2(x)}{64\pi^2} \right)}_{\text{local counterterm}} \right) \right)$$

has well-defined limit.

э

イロト 不得 トイヨト イヨト

Local renormalization IV : subtraction of **local** counterterms.

When dim(M) = 4, renormalization by local subtraction of counterterms :

$$\lim_{s \to 1} \log \left(\int [d\phi] \exp \left(-\frac{1}{2} \int_M \phi(-\Delta)\phi + V(x)\phi^2(x) - \underbrace{\frac{1}{s-1} \left(\frac{R_{scal}V(x)}{96\pi^2} - \frac{V^2(x)}{64\pi^2} \right)}_{\text{local counterterm}} \right) \right)$$

has well-defined limit.

For **analytic continuation of** $TR((A^{-s}V)^n)$ where A elliptic of order 2, results from Kontsevich–Vishik, Lesch, Paycha on Ψ DO traces.

Local renormalization V : Epstein–Glaser point of view.

Example

In our case : $\lim_{s\to 1} P_s(x, y)^2 - \frac{1}{64\pi^2(s-1)}\delta(x-y) \in \mathcal{D}'(M^2)$ is a distributional extension of $P^2(x, y) \in C^{\infty}(M^2 \setminus d_2)$.

(日) (同) (三) (三)

Local renormalization V : Epstein–Glaser point of view.

Example

In our case : $\lim_{s \to 1} P_s(x, y)^2 - \frac{1}{64\pi^2(s-1)}\delta(x-y) \in \mathcal{D}'(M^2)$ is a distributional extension of $P^2(x, y) \in C^{\infty}(M^2 \setminus d_2)$.

Renormalization in the sense of Epstein–Glaser (1975), Stora (1982, 2013), Brunetti-Fredenhagen (2000), Hollands–Wald (2001), Nikolov–Todorov–Stora (2013)

$$\lim_{s\to 1} \left(t_{G_n}(s) - \underbrace{c(s)}_{\text{counterterm}} \right) \in \mathcal{D}'(M^n)$$

is a **distributional extension** of t_{G_n} whose *WF* over diagonal $d_n = \{(x, \ldots, x); x \in M\} \subset M^n$ is contained in conormal of d_n .

ヘロト 人間ト 人間ト 人間トー

Local renormalization V : Epstein–Glaser point of view.

Recipe : **choose** some distributional extension $\mathcal{R}(t_{G_n})$ for t_{G_n} , $n \leq \frac{d}{2}$ whose *WF* has right property then renormalized determinant $\mathcal{R} \det(1 + (-\Delta)^{-1}V)$ defined as :

$$Z(V) = \exp\left(\sum_{2 \leqslant n \leqslant \frac{d}{2}} \frac{(-1)^{n+1}}{n} \left\langle \mathcal{R}(t_{G_n}), V^{\otimes n} \right\rangle + \sum_{n > \frac{d}{2}} \frac{(-1)^{n+1} TR(((-\Delta)^{-1}V)^n)}{n}\right)$$

 $V \mapsto Z(V)$ local functional.

・ロン ・四 と ・ ヨン ・ ヨン

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Periods of geodesic flow.

Definition (Periods)

Subset of \mathbb{R}

$$\mathcal{P}(g) = \{T \text{ s.t. } \Phi^{T}(x;\xi) = (x;\xi) \text{ for } (x;\xi) \in S^{*}M\} \subset \mathbb{R}$$

where $(\Phi^t)_t$ Hamiltonian flow on the unitary cosphere S^*M defined by $g_{\mu\nu}(x)\xi^{\mu}\xi^{\nu}$.

3

・ロト ・回ト ・ヨト ・ヨト

Periods of geodesic flow.

Definition (Periods)

Subset of \mathbb{R}

$$\mathcal{P}(g) = \{T \text{ s.t. } \Phi^T(x;\xi) = (x;\xi) \text{ for } (x;\xi) \in S^*M\} \subset \mathbb{R}$$

where $(\Phi^t)_t$ Hamiltonian flow on the unitary cosphere S^*M defined by $g_{\mu\nu}(x)\xi^{\mu}\xi^{\nu}$.

Closed orbit γ in constant energy hypersurface $\{H = 1\} \simeq S^*M \subset T^*M$,

Period(γ) = $\int_{\gamma \subset H=1}^{\infty} \theta$ where $\theta = pdq$ Liouville form.

イロン イロン イヨン イヨン 三日

Consequence.

Let (g_1, g_2) be two metrics. Denote c_n amplitude for *n*-gon graph. If $c_n(g_1) = c_n(g_2)$ for all $n > \frac{d}{2}$ then $\text{Spec}(M, g_1) = \text{Spec}(M, g_2)$.

イロト イポト イヨト イヨト

Consequence.

Let (g_1, g_2) be two metrics. Denote c_n amplitude for *n*-gon graph. If $c_n(g_1) = c_n(g_2)$ for all $n > \frac{d}{2}$ then $\operatorname{Spec}(M, g_1) = \operatorname{Spec}(M, g_2)$. Zeroes of entire function $D(\lambda) = \exp\left(\sum_{n > \frac{d}{2}} \frac{(-1)^{n+1}\lambda^n}{n} c_n(g)\right)$.

$$S_{EH}(g) = \operatorname{Res}|_{s=\frac{d}{2}-1} \left(\int_0^\infty t^{s-1} \sum_{z \in \{D=0\}} e^{-tz} dt \right).$$

dim(M) = 2, $\chi(M)$ by Gauss–Bonnet.

Consequence.

Let (g_1, g_2) be two metrics. Denote c_n amplitude for *n*-gon graph. If $c_n(g_1) = c_n(g_2)$ for all $n > \frac{d}{2}$ then $\operatorname{Spec}(M, g_1) = \operatorname{Spec}(M, g_2)$. Zeroes of entire function $D(\lambda) = \exp\left(\sum_{n > \frac{d}{2}} \frac{(-1)^{n+1}\lambda^n}{n} c_n(g)\right)$.

$$S_{EH}(g) = \operatorname{Res}|_{s=\frac{d}{2}-1} \left(\int_0^\infty t^{s-1} \sum_{z \in \{D=0\}} e^{-tz} dt \right).$$

dim(M) = 2, $\chi(M)$ by Gauss–Bonnet.

Moreover by Colin de Verdière, Chazarain and Duistermaat–Guillemin's trace formulas, if (g_1, g_2) have negative curvature then same lenght spectrum $\mathcal{P}(g_1) = \mathcal{P}(g_2)$. Rigidity from Guillemin–Kazhdan and compactness of isospectral metrics from Osgood-Philips-Sarnak should give finiteness.

・ロト ・回ト ・ヨト ・ヨト

Diagrams of ϕ^4 theory

Need method to go beyond free theory.

э

イロト イポト イヨト イヨト

◆□> ◆□> ◆臣> ◆臣> ─ 臣

The idea of Eugene Speer.

Example

Triangle graph. On $\mathbb{R}^4 \times \mathbb{R}^4 \times \mathbb{R}^4$, $G(x, y) = \frac{c}{\|x - y\|^2}$, the amplitude :

$$\frac{c}{\|x_1 - x_2\|^2} \frac{c}{\|x_2 - x_3\|^2} \frac{c}{\|x_3 - x_1\|^2}$$

becomes after regularization

$$\frac{c}{\|x_1 - x_2\|^{2s_{12}}} \frac{c}{\|x_2 - x_3\|^{2s_{23}}} \frac{c}{\|x_3 - x_1\|^{2s_{31}}}$$

where $(s_{12}, s_{23}, s_{31}) \in \mathbb{C}^3$ are **complex parameters**. Number of complex parameters=number of edges in *G*

イロト イポト イヨト イヨト

Multiple zeta regularization.

Definition (Multiple zeta regularization)

G a graph with n vertices then regularized Feynman amplitudes :

$$t_G((s_e)_{e \in E(G)}) = \prod_{e \in E(G)} \underbrace{P_{s_e}(x_{i(e)}, x_{j(e)})}_{Green \ kernel \ of \ (-\Delta)^{-s}}$$

which is in $C^{\infty}(M^n \setminus \text{diagonals})$ depending on parameters $(s_e)_{e \in E(G)}$.

Related to Duetsch-Fredenhagen-Keller-Rejzner, Guéré-Hack-Pinamonti.

イロト イポト イヨト イヨト

(3)

Meromorphic germs with linear poles.

Example

On \mathbb{C}^2 , $P \in \mathbb{C}[X_1, X_2]$:

$$\frac{P(z_1, z_2)}{(z_1 + z_2)^2 z_1 z_2}$$

Singular on $\{z_1 = 0\}, \{z_2 = 0\}, \{z_1 + z_2 = 0\}.$

Theorem (Berline–Vergne(2015), Guo–Paycha–Zhang(2015))

Direct sum decomposition :

polar germs \oplus holomorphic part.

イロト イポト イヨト イヨト

Meromorphic germs with linear poles.

Example

On \mathbb{C}^2 , $P \in \mathbb{C}[X_1, X_2]$:

$$\frac{P(z_1, z_2)}{(z_1 + z_2)^2 z_1 z_2}$$

Singular on $\{z_1 = 0\}, \{z_2 = 0\}, \{z_1 + z_2 = 0\}.$

Theorem (Berline–Vergne(2015), Guo–Paycha–Zhang(2015))

Direct sum decomposition :

polar germs \oplus holomorphic part.

Example

$$\frac{z_1 + 2z_2}{z_1(z_1 + z_2)z_2} = \frac{2}{z_1(z_1 + z_2)} + \frac{1}{(z_1 + z_2)z_2}$$

Nguyen Viet Dang (Université Lyon 1) Renorm

Multiloop renormalization.

With Bin Zhang using Guo-Paycha-Zhang.

<ロ> (日) (日) (日) (日) (日)

Bin Zhang

2

・ロン ・四 と ・ ヨ と ・ ヨ と

Main result.

Theorem (D-Zhang)

G oriented graph with n vertices, $\forall \varphi \in C^{\infty}(M^n)$,

$$\int_{M^n} t_G(s) \varphi \underbrace{d^d x_1 \dots d^d x_n}_{\text{Riemannian vol.}}$$
(4)

・ロト ・回ト ・ヨト ・ヨト

extends to a meromorphic germ of $(s_e)_{e \in E(G)}$ with linear poles at $(s_e = 1)_{e \in E(G)}$.

Pole structure : simplified version.

Definition (Divergent graphs.)

Graph G divergent if there is some subgraph G_i such that $\frac{d}{2}b_1(G_i) - e(G_i) \in \mathbb{N}$ where $e(G_i)$ number of edges in G_i .

(日) (同) (三) (三)

Pole structure : simplified version.

Definition (Divergent graphs.)

Graph G divergent if there is some subgraph G_i such that $\frac{d}{2}b_1(G_i) - e(G_i) \in \mathbb{N}$ where $e(G_i)$ number of edges in G_i .

Theorem (D-Zhang)

G oriented graph with n vertices, $\forall \varphi \in C^{\infty}(M^n)$, $\langle t_G(s), \varphi \rangle$ belongs to \mathcal{M}_+ -module generated by $\prod_{G' \subset G} \frac{1}{\sum_{e \in E(G')} s_e - e(G')}$.

イロト イポト イヨト イヨト

Pole structure : simplified version.

Definition (Divergent graphs.)

Graph G divergent if there is some subgraph G_i such that $\frac{d}{2}b_1(G_i) - e(G_i) \in \mathbb{N}$ where $e(G_i)$ number of edges in G_i .

Theorem (D-Zhang)

G oriented graph with n vertices, $\forall \varphi \in C^{\infty}(M^n)$, $\langle t_G(s), \varphi \rangle$ belongs to \mathcal{M}_+ -module generated by $\prod_{G' \subset G} \frac{1}{\sum_{e \in E(G')} s_e - e(G')}$.

In practice

$$\langle t_{\mathcal{G}}(s), \varphi
angle \in \bigoplus_{F \in \operatorname{Div}(\mathcal{G})} \left(\prod_{G' \in F} \frac{1}{\sum_{e \in E(G')} s_e - e(G')} \right) \mathcal{M}_+ \bigoplus \mathcal{M}_+.$$

・ロン ・四 と ・ ヨン ・ ヨン

Idea of the proof I.

Relation with heat kernel and decomposition

$$(-\Delta)^{-s} = rac{1}{\Gamma(s)} \int_0^1 \left(e^{t\Delta} - \Pi\right) t^s rac{dt}{t} + {\sf holo}.$$

Heat kernel expansion :

$$e^{t\Delta}(x,y) \sim \sum_{k=0}^{\infty} \psi(d^2) \frac{e^{-rac{d^2(x,y)}{4t}}}{(4\pi t)^{rac{d}{2}}} a_k(x,y) t^k$$

E

イロン イヨン イヨン イヨン

Idea of the proof II.

E(G) = E, distance function $d : M \times M \mapsto \mathbb{R}_{\geq}$. Analytic continuation in $(s_e)_{e=1}^{E}$ of

$$\int_{[0,1]^E} dt_1 \dots dt_E t_1^{s_1-1} \dots t_E^{s_E-1} \underbrace{\exp\left(-\sum_{e=1}^E \frac{d^2(x_{i(e)}, x_{j(e)})}{4t_e}\right)}_{\text{non smooth}} \dots$$

2

ヘロト 人間ト 人団ト 人団ト

Idea of the proof II.

$$E(G) = E, \text{ distance function } d: M \times M \mapsto \mathbb{R}_{\geq}. \text{ Analytic continuation in } (s_e)_{e=1}^E$$

of
$$\int_{[0,1]^E} dt_1 \dots dt_E t_1^{s_1-1} \dots t_E^{s_E-1} \underbrace{\exp\left(-\sum_{e=1}^E \frac{d^2(x_{i(e)}, x_{j(e)})}{4t_e}\right)}_{\text{non smooth}} \dots$$

Work in space $M^{V(G)} \times [0,1]^{E}$.

2

・ロト ・個ト ・ヨト ・ヨト

Example 2-vertices, 2-edges.

3

<ロ> (日) (日) (日) (日) (日)

Example 2-vertices, 2-edges. Toy model, the map $(t_1, t_2, x_1, x_2) \in [0, 1]^2 \times (\mathbb{R}^d)^2 \mapsto \exp\left(-\sum_{e=1}^2 \frac{|x_1 - x_2|^2}{4t_e}\right)$ non C^{∞} .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example 2-vertices, 2-edges. Toy model, the map $(t_1, t_2, x_1, x_2) \in [0, 1]^2 \times (\mathbb{R}^d)^2 \longmapsto \exp\left(-\sum_{e=1}^2 \frac{|x_1 - x_2|^2}{4t_e}\right)$ non C^{∞} . Restrict to simplex $\mathbf{\Delta} = \{0 \leq t_1 \leq t_2 \leq 1\}$ and define $\pi : [0, 1]^2 \times (\mathbb{R}^d)^2 \longmapsto \mathbf{\Delta} \times (\mathbb{R}^d)^2$ s.t. the pull-back $\pi^* \exp\left(-\sum_{e=1}^2 \frac{|x_1 - x_2|^2}{4t_e}\right) \in C^{\infty}\left([0, 1]^2 \times (\mathbb{R}^d)^2\right)$.

ヘロト 人間ト 人団ト 人団ト

Example 2-vertices, 2-edges. Toy model, the map $(t_1, t_2, x_1, x_2) \in [0, 1]^2 \times (\mathbb{R}^d)^2 \longmapsto \exp\left(-\sum_{e=1}^2 \frac{|x_1 - x_2|^2}{4t_e}\right)$ non C^{∞} . Restrict to simplex $\mathbf{\Delta} = \{ 0 \leq t_1 \leq t_2 \leq 1 \}$ and define $\pi: [0,1]^2 \times (\mathbb{R}^d)^2 \longmapsto \mathbf{\Delta} \times (\mathbb{R}^d)^2$ s.t. the pull-back $\pi^* \exp\left(-\sum_{e=1}^2 \frac{|x_1-x_2|^2}{4t_e}\right) \in C^\infty\left([0,1]^2 \times (\mathbb{R}^d)^2\right).$ Change of variables $(x_1, x_2 = x_1 + \sqrt{u_1 u_2}h, t_2 = u_2, t_1 = u_1 u_2)$ yields $\left|\exp\left(-\frac{|h|^2(1+u_1)}{\varDelta}\right)\right|$

Example 2-vertices, 2-edges. Toy model, the map $(t_1, t_2, x_1, x_2) \in [0, 1]^2 \times (\mathbb{R}^d)^2 \longmapsto \exp\left(-\sum_{e=1}^2 \frac{|x_1 - x_2|^2}{4t_e}\right)$ non C^{∞} . Restrict to simplex $\mathbf{\Delta} = \{0 \leq t_1 \leq t_2 \leq 1\}$ and define $\pi : [0, 1]^2 \times (\mathbb{R}^d)^2 \longmapsto \mathbf{\Delta} \times (\mathbb{R}^d)^2$

s.t. the pull-back $\pi^* \exp\left(-\sum_{e=1}^2 \frac{|x_1-x_2|^2}{4t_e}\right) \in C^{\infty}\left([0,1]^2 \times (\mathbb{R}^d)^2\right)$. Change of variables $(x_1, x_2 = x_1 + \sqrt{u_1u_2}h, t_2 = u_2, t_1 = u_1u_2)$ yields

$$\exp\left(-\frac{|h|^2(1+u_1)}{4}\right)$$

Reduce to integrals of the form

$$\int_{[0,1]^2} du_1 du_2 \underbrace{\left(u_1^{s_1-1}u_2^{s_1+s_2-\frac{d}{2}-1}\right)}_{\text{gives linear poles}} \underbrace{\chi(u_1, u_2)}_{C^{\infty}}$$

Inspired by Speer (1969) and Hepp (1966), blow-ups are encoded combinatorially by spanning trees of the graph G which correspond to **simplices** (called Hepp sector) of $[0, 1]^{E}$. **Draw picture.**

Thanks for your attention !

2

イロト イヨト イヨト イヨト