Decay of the local energy and scattering theory for the charged Klein-Gordon equation in the exterior De Sitter-Reissner-Nordström spacetime

Nicolas BESSET

Institut Fourier, Université Grenoble Alpes, France

Quantum fields, scattering and spacetime horizons:
mathematical challenges
Les Houches, May 23, 2018

The exterior De Sitter-Reissner-Nordström (DSRN) spacetime

In Boyer-Lindquist coordinates $\left.(t, r, \omega) \in \mathbb{R}_{t} \times\right] 0,+\infty\left[r \times \mathbb{S}_{\omega}^{2}\right.$, the DSRN metric g is given by

$$
g=F(r) \mathrm{d} t^{2}-F(r)^{-1} \mathrm{~d} r^{2}-r^{2} \mathrm{~d} \omega^{2}, \quad F(r)=1-\frac{2 M}{r}+\frac{Q^{2}}{2 r^{2}}-\frac{\Lambda r^{2}}{3}
$$

where $M>0$ is the black hole mass, $Q \neq 0$ its electric charge and $\Lambda>0$ is the cosmological constant.

The exterior De Sitter-Reissner-Nordström (DSRN) spacetime

In Boyer-Lindquist coordinates $\left.(t, r, \omega) \in \mathbb{R}_{t} \times\right] 0,+\infty\left[r \times \mathbb{S}_{\omega}^{2}\right.$, the DSRN metric g is given by

$$
g=F(r) \mathrm{d} t^{2}-F(r)^{-1} \mathrm{~d} r^{2}-r^{2} \mathrm{~d} \omega^{2}, \quad F(r)=1-\frac{2 M}{r}+\frac{Q^{2}}{2 r^{2}}-\frac{\Lambda r^{2}}{3}
$$

where $M>0$ is the black hole mass, $Q \neq 0$ its electric charge and $\Lambda>0$ is the cosmological constant.

Let $A_{\mu}=(Q / r) \mathrm{d} t$. Then $\left(g, A_{\mu}\right)$ solves the Einstein-Maxwell field equation

$$
\operatorname{Ric}_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=T_{\mu \nu}, \quad T_{\mu \nu}=\frac{1}{4} g_{\mu \nu} \mathcal{F}^{\sigma \rho} \mathcal{F}_{\sigma \rho}-\mathcal{F}_{\mu \sigma} \mathcal{F}_{\nu}{ }^{\sigma}
$$

where Ric is Ricci tensor, R the scalar curvature and $\mathcal{F}=\mathrm{d} A$ the electromagnetic tensor.

The exterior De Sitter-Reissner-Nordström (DSRN) spacetime

In Boyer-Lindquist coordinates $\left.(t, r, \omega) \in \mathbb{R}_{t} \times\right] 0,+\infty\left[r \times \mathbb{S}_{\omega}^{2}\right.$, the DSRN metric g is given by

$$
g=F(r) \mathrm{d} t^{2}-F(r)^{-1} \mathrm{~d} r^{2}-r^{2} \mathrm{~d} \omega^{2}, \quad F(r)=1-\frac{2 M}{r}+\frac{Q^{2}}{2 r^{2}}-\frac{\Lambda r^{2}}{3}
$$

where $M>0$ is the black hole mass, $Q \neq 0$ its electric charge and $\Lambda>0$ is the cosmological constant.

Let $A_{\mu}=(Q / r) \mathrm{d} t$. Then $\left(g, A_{\mu}\right)$ solves the Einstein-Maxwell field equation

$$
\operatorname{Ric}_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=T_{\mu \nu}, \quad T_{\mu \nu}=\frac{1}{4} g_{\mu \nu} \mathcal{F}^{\sigma \rho} \mathcal{F}_{\sigma \rho}-\mathcal{F}_{\mu \sigma} \mathcal{F}_{\nu}{ }^{\sigma}
$$

where Ric is Ricci tensor, R the scalar curvature and $\mathcal{F}=\mathrm{d} A$ the electromagnetic tensor.

Under some assumptions on M, Q and Λ, F has four roots $r_{n}<0<r_{c}<r_{-}<r_{+}$and is positive between r_{-}and r_{+}. The exterior DSRN spacetime is the lorentzian manifold $\left.\mathcal{M}=\mathbb{R}_{t} \times\right] r_{-}, r_{+}\left[{ }_{r} \times \mathbb{S}_{\omega}^{2}\right.$ endowed with the metric g.

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.
- 3 Killing vector fields: ∂_{t} (timelike) +2 others (spherical symmetry).

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.
- 3 Killing vector fields: ∂_{t} (timelike) +2 others (spherical symmetry).
- Noether's theorem + mass equation $\Longrightarrow 4$ conserved quantities for the geodesic motion: for γ null geodesic,

$$
g\left(\dot{\gamma}, \partial_{t}\right)=E \in \mathbb{R}, \quad g\left(\dot{\gamma}, \partial_{\phi}\right)=L \in \mathbb{R}, \quad g(\dot{\gamma}, \dot{\gamma})=0 .
$$

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.
- 3 Killing vector fields: ∂_{t} (timelike) +2 others (spherical symmetry).
- Noether's theorem + mass equation $\Longrightarrow 4$ conserved quantities for the geodesic motion: for γ null geodesic,

$$
g\left(\dot{\gamma}, \partial_{t}\right)=E \in \mathbb{R}, \quad g\left(\dot{\gamma}, \partial_{\phi}\right)=L \in \mathbb{R}, \quad g(\dot{\gamma}, \dot{\gamma})=0 .
$$

\Longrightarrow energy equation

$$
E^{2}=\dot{r}^{2}+\frac{F(r)}{r^{2}} L^{2}
$$

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.
- 3 Killing vector fields: ∂_{t} (timelike) +2 others (spherical symmetry).
- Noether's theorem + mass equation $\Longrightarrow 4$ conserved quantities for the geodesic motion: for γ null geodesic,

$$
g\left(\dot{\gamma}, \partial_{t}\right)=E \in \mathbb{R}, \quad g\left(\dot{\gamma}, \partial_{\phi}\right)=L \in \mathbb{R}, \quad g(\dot{\gamma}, \dot{\gamma})=0
$$

\Longrightarrow energy equation

$$
E^{2}=\dot{r}^{2}+\frac{F(r)}{r^{2}} L^{2}
$$

Trivial solution for $r=\mathfrak{r} \in] r_{-}, r_{+}$[at which $F(r) / r^{2}$ is maximal \rightsquigarrow Photon sphere $\mathbb{R}_{t} \times\{\mathfrak{r}\}_{r} \times \mathbb{S}_{\omega}^{2}$.

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.
- 3 Killing vector fields: ∂_{t} (timelike) +2 others (spherical symmetry).
- Noether's theorem + mass equation $\Longrightarrow 4$ conserved quantities for the geodesic motion: for γ null geodesic,

$$
g\left(\dot{\gamma}, \partial_{t}\right)=E \in \mathbb{R}, \quad g\left(\dot{\gamma}, \partial_{\phi}\right)=L \in \mathbb{R}, \quad g(\dot{\gamma}, \dot{\gamma})=0
$$

\Longrightarrow energy equation

$$
E^{2}=\dot{r}^{2}+\frac{F(r)}{r^{2}} L^{2}
$$

Trivial solution for $r=\mathfrak{r} \in] r_{-}, r_{+}$[at which $F(r) / r^{2}$ is maximal \rightsquigarrow Photon sphere $\mathbb{R}_{t} \times\{\mathfrak{r}\}_{r} \times \mathbb{S}_{\omega}^{2}$.

This is the only photon sphere in the exterior DSRN spacetime

Geometric properties of the exterior DSRN spacetime

- Eternal, spherical, static and charged black hole.
- 3 Killing vector fields: ∂_{t} (timelike) +2 others (spherical symmetry).
- Noether's theorem + mass equation $\Longrightarrow 4$ conserved quantities for the geodesic motion: for γ null geodesic,

$$
g\left(\dot{\gamma}, \partial_{t}\right)=E \in \mathbb{R}, \quad g\left(\dot{\gamma}, \partial_{\phi}\right)=L \in \mathbb{R}, \quad g(\dot{\gamma}, \dot{\gamma})=0
$$

\Longrightarrow energy equation

$$
E^{2}=\dot{r}^{2}+\frac{F(r)}{r^{2}} L^{2}
$$

Trivial solution for $r=\mathfrak{r} \in] r_{-}, r_{+}$[at which $F(r) / r^{2}$ is maximal \rightsquigarrow Photon sphere $\mathbb{R}_{t} \times\{\mathfrak{r}\}_{r} \times \mathbb{S}_{\omega}^{2}$.

This is the only photon sphere in the exterior DSRN spacetime (4 roots for F, 1 photon sphere: see Mokdad).

Charged Klein-Gordon (KG) equation, quadratic pencil
Let $q \in \mathbb{R}$ and $m>0$. We define the charged wave operator on (\mathcal{M}, g)

$$
\square_{g}:=\left(\nabla_{\mu}-\mathrm{i} q A_{\mu}\right)\left(\nabla^{\mu}-\mathrm{i} q A^{\mu}\right)
$$

and the charged KG equation reads

$$
\begin{equation*}
\square_{g} u+m^{2} u=0 \tag{1}
\end{equation*}
$$

Charged Klein-Gordon (KG) equation, quadratic pencil
Let $q \in \mathbb{R}$ and $m>0$. We define the charged wave operator on (\mathcal{M}, g)

$$
\square_{g}:=\left(\nabla_{\mu}-\mathrm{i} q A_{\mu}\right)\left(\nabla^{\mu}-\mathrm{i} q A^{\mu}\right)
$$

and the charged KG equation reads

$$
\begin{equation*}
\square_{g} u+m^{2} u=0 \tag{1}
\end{equation*}
$$

Set $s:=q Q \in \mathbb{R}$ the charge product and $V(r):=r^{-1}$ so that (1) becomes

$$
\left(\partial_{t}-\mathrm{i} V\right)^{2} u+\hat{P} u=0, \quad \hat{P}=-\frac{F}{r^{2}} \partial_{r}\left(r^{2} F \partial_{r}\right)-\frac{F}{r^{2}} \Delta_{\mathbb{S}^{2}}+m^{2} F
$$

Charged Klein-Gordon (KG) equation, quadratic pencil
Let $q \in \mathbb{R}$ and $m>0$. We define the charged wave operator on (\mathcal{M}, g)

$$
\square_{g}:=\left(\nabla_{\mu}-\mathrm{i} q A_{\mu}\right)\left(\nabla^{\mu}-\mathrm{i} q A^{\mu}\right)
$$

and the charged KG equation reads

$$
\begin{equation*}
\unlhd_{g} u+m^{2} u=0 \tag{1}
\end{equation*}
$$

Set $s:=q Q \in \mathbb{R}$ the charge product and $V(r):=r^{-1}$ so that (1) becomes

$$
\left(\partial_{t}-\mathrm{i} s\right)^{2} u+\hat{P} u=0, \quad \hat{P}=-\frac{F}{r^{2}} \partial_{r}\left(r^{2} F \partial_{r}\right)-\frac{F}{r^{2}} \Delta_{\mathbb{S}^{2}}+m^{2} F
$$

We introduce the operator $P:=r \hat{P} r^{-1}$ and the Regge-Wheeler coordinate

$$
\frac{\mathrm{d} x}{\mathrm{~d} r}:=\frac{1}{F(r)}, \quad x(\mathfrak{r})=0 \quad\left(\text { maximum of } F / r^{2}\right)
$$

Charged Klein-Gordon (KG) equation, quadratic pencil
Let $q \in \mathbb{R}$ and $m>0$. We define the charged wave operator on (\mathcal{M}, g)

$$
\square_{g}:=\left(\nabla_{\mu}-\mathrm{i} q A_{\mu}\right)\left(\nabla^{\mu}-\mathrm{i} q A^{\mu}\right)
$$

and the charged KG equation reads

$$
\begin{equation*}
\square_{g} u+m^{2} u=0 \tag{1}
\end{equation*}
$$

Set $s:=q Q \in \mathbb{R}$ the charge product and $V(r):=r^{-1}$ so that (1) becomes

$$
\left(\partial_{t}-\text { is } V\right)^{2} u+\hat{P} u=0, \quad \hat{P}=-\frac{F}{r^{2}} \partial_{r}\left(r^{2} F \partial_{r}\right)-\frac{F}{r^{2}} \Delta_{\mathbb{S}^{2}}+m^{2} F
$$

We introduce the operator $P:=r \hat{P} r^{-1}$ and the Regge-Wheeler coordinate

$$
\frac{\mathrm{d} x}{\mathrm{~d} r}:=\frac{1}{F(r)}, \quad x(\mathfrak{r})=0 \quad\left(\text { maximum of } F / r^{2}\right)
$$

Principal symbol of $P: \xi^{2}+\eta^{2} W(x), W=F / r^{2} \rightsquigarrow$ normally hyperbolic trapping.

Charged Klein-Gordon (KG) equation, quadratic pencil
Let $q \in \mathbb{R}$ and $m>0$. We define the charged wave operator on (\mathcal{M}, g)

$$
\square_{g}:=\left(\nabla_{\mu}-\mathrm{i} q A_{\mu}\right)\left(\nabla^{\mu}-\mathrm{i} q A^{\mu}\right)
$$

and the charged KG equation reads

$$
\begin{equation*}
\square_{g} u+m^{2} u=0 \tag{1}
\end{equation*}
$$

Set $s:=q Q \in \mathbb{R}$ the charge product and $V(r):=r^{-1}$ so that (1) becomes

$$
\left(\partial_{t}-\text { is } V\right)^{2} u+\hat{P} u=0, \quad \hat{P}=-\frac{F}{r^{2}} \partial_{r}\left(r^{2} F \partial_{r}\right)-\frac{F}{r^{2}} \Delta_{\mathbb{S}^{2}}+m^{2} F
$$

We introduce the operator $P:=r \hat{P} r^{-1}$ and the Regge-Wheeler coordinate

$$
\frac{\mathrm{d} x}{\mathrm{~d} r}:=\frac{1}{F(r)}, \quad x(\mathfrak{r})=0 \quad\left(\text { maximum of } F / r^{2}\right)
$$

Principal symbol of $P: \xi^{2}+\eta^{2} W(x), W=F / r^{2} \rightsquigarrow$ normally hyperbolic trapping.
If $u(t, x, \omega)=\mathrm{e}^{\mathrm{i} z t} v(x, \omega)$ solves $\left(\partial_{t}-\mathrm{is} V\right)^{2} u+P u=0$ for some $z \in \mathbb{C}$, then $P v-(z-s V)^{2} v=0$. This motivates us to define the quadratic pencil

$$
p(z, s):=P-(z-s V)^{2}
$$

Superradiance

For $\ell \in \mathbb{R}$, the energies

$$
\langle u \mid u\rangle_{\ell}:=\left\|\left(\partial_{t}-\mathrm{i} \ell\right) u\right\|^{2}+\left\langle\left(P-(s V-\ell)^{2}\right) u, u\right\rangle
$$

are formally conserved if u solves $\left(\partial_{t}-\mathrm{is} V\right)^{2} u+P u=0$.

Superradiance

For $\ell \in \mathbb{R}$, the energies

$$
\langle u \mid u\rangle_{\ell}:=\left\|\left(\partial_{t}-\mathrm{i} \ell\right) u\right\|^{2}+\left\langle\left(P-(s V-\ell)^{2}\right) u, u\right\rangle
$$

are formally conserved if u solves $\left(\partial_{t}-i s V\right)^{2} u+P u=0$.

- Reissner-Nordström $(\Lambda=0): F(r) \rightarrow 1$ as $r \rightarrow+\infty$, so for s small

$$
\begin{aligned}
\langle u \mid u\rangle_{s V_{-}} & \gtrsim\left\langle-r^{-1} \partial_{x} r^{2} \partial_{x} r^{-1} u, u\right\rangle+\left\langle-r^{-2} F \Delta_{\mathbb{S}^{2}} u, u\right\rangle \\
& +\left\langle\left(m^{2} F-s^{2}\left(V-V_{-}\right)^{2}\right) u, u\right\rangle>0
\end{aligned}
$$

because $F(r), V(r)-V_{-}=\mathcal{O}_{r \rightarrow r_{-}}\left(r-r_{-}\right)$.

Superradiance

For $\ell \in \mathbb{R}$, the energies

$$
\langle u \mid u\rangle_{\ell}:=\left\|\left(\partial_{t}-\mathrm{i} \ell\right) u\right\|^{2}+\left\langle\left(P-(s V-\ell)^{2}\right) u, u\right\rangle
$$

are formally conserved if u solves $\left(\partial_{t}-i s V\right)^{2} u+P u=0$.

- Reissner-Nordström $(\Lambda=0): F(r) \rightarrow 1$ as $r \rightarrow+\infty$, so for s small

$$
\begin{aligned}
\langle u \mid u\rangle_{s V_{-}} & \gtrsim\left\langle-r^{-1} \partial_{x} r^{2} \partial_{x} r^{-1} u, u\right\rangle+\left\langle-r^{-2} F \Delta_{\mathbb{S}^{2}} u, u\right\rangle \\
& +\left\langle\left(m^{2} F-s^{2}\left(V-V_{-}\right)^{2}\right) u, u\right\rangle>0
\end{aligned}
$$

because $F(r), V(r)-V_{-}=\mathcal{O}_{r \rightarrow r_{-}}\left(r-r_{-}\right)$.

- DSRN $(\Lambda>0)$: these energies are never positive.

Fix ℓ so that $s V_{-}-\ell \neq 0$, let f supported in] $-\infty,-1[$ such that $\left\|\left(\partial_{t}-i \ell\right) f\right\|=0$ and $-\Delta_{\mathbb{S}^{2}} f=0$, and choose $R \gg 0$:
$\left\langle R^{-1 / 2} f(x / R) \mid R^{-1 / 2} f(x / R)\right\rangle_{\ell}$
$=R^{-2}\left\|R^{-1} f^{\prime}(x / R)\right\|^{2}+\left\langle\left(r^{-1} F F^{\prime}+m^{2} F-(s V-\ell)^{2}\right) R^{-1 / 2} f(x / R), R^{-1 / 2} f(x / R)\right\rangle$
$=R^{-2}\left\|f^{\prime}\right\|^{2}-\left(s V_{-}-\ell\right)^{2}\left(1+o_{R \rightarrow+\infty}(1)\right)\|f\|^{2}<0$.

Superradiance

For $\ell \in \mathbb{R}$, the energies

$$
\langle u \mid u\rangle_{\ell}:=\left\|\left(\partial_{t}-\mathrm{i} \ell\right) u\right\|^{2}+\left\langle\left(P-(s V-\ell)^{2}\right) u, u\right\rangle
$$

are formally conserved if u solves $\left(\partial_{t}-i s V\right)^{2} u+P u=0$.

- Reissner-Nordström $(\Lambda=0): F(r) \rightarrow 1$ as $r \rightarrow+\infty$, so for s small

$$
\begin{aligned}
\langle u \mid u\rangle_{s V_{-}} & \gtrsim\left\langle-r^{-1} \partial_{x} r^{2} \partial_{x} r^{-1} u, u\right\rangle+\left\langle-r^{-2} F \Delta_{\mathbb{S}^{2}} u, u\right\rangle \\
& +\left\langle\left(m^{2} F-s^{2}\left(V-V_{-}\right)^{2}\right) u, u\right\rangle>0
\end{aligned}
$$

because $F(r), V(r)-V_{-}=\mathcal{O}_{r \rightarrow r_{-}}\left(r-r_{-}\right)$.

- DSRN $(\Lambda>0)$: these energies are never positive.

Fix ℓ so that $s V_{-}-\ell \neq 0$, let f supported in] $-\infty,-1[$ such that $\left\|\left(\partial_{t}-\mathrm{i} \ell\right) f\right\|=0$ and $-\Delta_{\mathbb{S}^{2}} f=0$, and choose $R \gg 0$:
$\left\langle R^{-1 / 2} f(x / R) \mid R^{-1 / 2} f(x / R)\right\rangle_{\ell}$

$$
\begin{aligned}
& =R^{-2}\left\|R^{-1} f^{\prime}(x / R)\right\|^{2}+\left\langle\left(r^{-1} F F^{\prime}+m^{2} F-(s V-\ell)^{2}\right) R^{-1 / 2} f(x / R), R^{-1 / 2} f(x / R)\right\rangle \\
& =R^{-2}\left\|f^{\prime}\right\|^{2}-\left(s V_{-}-\ell\right)^{2}\left(1+o_{R \rightarrow+\infty}(1)\right)\|f\|^{2}<0
\end{aligned}
$$

- Kerr's type topology (following the rotation):

$$
\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{\mathcal{E}}}^{2}:=\left\langle P u_{0}, u_{0}\right\rangle+\left\|u_{1}-s V u_{0}\right\|^{2}
$$

Charge Klein-Gordon operator

If u solves the second order equation

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V\right)^{2} u+P u=0 \tag{2}
\end{equation*}
$$

then $v:=\left(u,-\mathrm{i} \partial_{t} u-s V u\right)$ solves the first order equation

$$
-\mathrm{i} \partial_{t} v=\hat{K}(s) v, \quad \hat{K}(s)=\left(\begin{array}{cc}
s V & \mathrm{Id} \tag{3}\\
P & s V
\end{array}\right) .
$$

Conversely, if $v=\left(v_{0}, v_{1}\right)$ solves (3), then v_{0} solves (2). $\hat{K}(s)$ is the charge Klein-Gordon operator.

Charge Klein-Gordon operator

If u solves the second order equation

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V\right)^{2} u+P u=0 \tag{2}
\end{equation*}
$$

then $v:=\left(u,-\mathrm{i} \partial_{t} u-s V u\right)$ solves the first order equation

$$
-\mathrm{i} \partial_{t} v=\hat{K}(s) v, \quad \hat{K}(s)=\left(\begin{array}{cc}
s V & \mathrm{Id} \tag{3}\\
P & s V
\end{array}\right) .
$$

Conversely, if $v=\left(v_{0}, v_{1}\right)$ solves (3), then v_{0} solves (2). $\hat{K}(s)$ is the charge Klein-Gordon operator.

- Homogeneous energy space $\dot{\mathcal{E}}:=\overline{\mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \times \mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right)}{ }^{\|\cdot\|} \dot{\varepsilon}$.

Charge Klein-Gordon operator

If u solves the second order equation

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V\right)^{2} u+P u=0 \tag{2}
\end{equation*}
$$

then $v:=\left(u,-\mathrm{i} \partial_{t} u-s V u\right)$ solves the first order equation

$$
-\mathrm{i} \partial_{t} v=\hat{K}(s) v, \quad \hat{K}(s)=\left(\begin{array}{cc}
s V & \mathrm{Id} \tag{3}\\
P & s V
\end{array}\right) .
$$

Conversely, if $v=\left(v_{0}, v_{1}\right)$ solves (3), then v_{0} solves (2). $\hat{K}(s)$ is the charge Klein-Gordon operator.

- Homogeneous energy space $\dot{\mathcal{E}}:=\overline{\mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \times \mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right)}{ }^{\|\cdot\| \dot{\varepsilon}}$.
$-\hat{K}(s)$ generates a continuous semi-group $\left(\mathrm{e}^{\mathrm{i} t \hat{K}(s)}\right)_{t \in \mathbb{R}}$ on $\left(\dot{\mathcal{E}},\|\cdot\|_{\dot{\mathcal{E}}}\right)$.

Charge Klein-Gordon operator

If u solves the second order equation

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V\right)^{2} u+P u=0 \tag{2}
\end{equation*}
$$

then $v:=\left(u,-\mathrm{i} \partial_{t} u-s V u\right)$ solves the first order equation

$$
-\mathrm{i} \partial_{t} v=\hat{K}(s) v, \quad \hat{K}(s)=\left(\begin{array}{cc}
s V & \mathrm{Id} \tag{3}\\
P & s V
\end{array}\right) .
$$

Conversely, if $v=\left(v_{0}, v_{1}\right)$ solves (3), then v_{0} solves (2). $\hat{K}(s)$ is the charge Klein-Gordon operator.

- Homogeneous energy space $\dot{\mathcal{E}}:=\overline{\mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \times \mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right)}{ }^{\|\cdot\|} \dot{\varepsilon}$.
- $\hat{K}(s)$ generates a continuous semi-group $\left(\mathrm{e}^{\mathrm{it} \hat{\mathcal{K}}(s)}\right)_{t \in \mathbb{R}}$ on $\left(\dot{\mathcal{E}},\|\cdot\|_{\dot{\mathcal{E}}}\right)$.
- Link between charge KG operator and quadratic pencil: $\forall z \in \rho(\hat{K}(s))$

$$
(\hat{K}(s)-z)^{-1}=\left(\begin{array}{cc}
p(z, s)^{-1}(z-s V) & p(z, s)^{-1} \\
\operatorname{Id}+(z-s V) p(z, s)^{-1}(z-s V) & (z-s V) p(z, s)^{-1}
\end{array}\right)
$$

References

- Localization of resonances: Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).

References

- Localization of resonances: Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).
- Resonance expansion in black hole type spacetimes: Bony-Häfner (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De Sitter-Kerr).
- Localization of resonances: Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).
- Resonance expansion in black hole type spacetimes: Bony-Häfner (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De Sitter-Kerr).
- Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski, Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...
- Localization of resonances: Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).
- Resonance expansion in black hole type spacetimes: Bony-Häfner (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De Sitter-Kerr).
- Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski, Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...
- Global non linear stability of De Sitter-Kerr by Hintz, Vasy.
- Localization of resonances: Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).
- Resonance expansion in black hole type spacetimes: Bony-Häfner (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De Sitter-Kerr).
- Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski, Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...
- Global non linear stability of De Sitter-Kerr by Hintz, Vasy.
- Scattering theory without positive conserved energy (Kako, Bachelot, Gérard), Georgescu-Gérard-Häfner (De Sitter-Kerr), Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).

Meromorphic extension

Mazzeo-Melrose result does not directly apply for quadratic pencil.

Meromorphic extension

Mazzeo-Melrose result does not directly apply for quadratic pencil.
$u \mapsto \mathrm{e}^{-\mathrm{i} s V_{+} t} u \rightsquigarrow \lim _{r \rightarrow r_{+}} V(r)=0$. Let $w(x):=\sqrt{\left(r-r_{-}\right)\left(r_{+}-r\right)}$,
$i_{ \pm}, j_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below, $\tilde{V}_{ \pm}:=V \mp j_{\mp}^{2} r_{-}^{-1}$ and

$$
\hat{H}(s):=\left(\begin{array}{cc}
0 & \text { Id } \\
P-s^{2} V^{2} & 2 s V
\end{array}\right), \quad \hat{H}_{ \pm}(s):=\left(\begin{array}{cc}
0 & \text { Id } \\
P-s^{2} \tilde{V}_{ \pm}^{2} & 2 s \tilde{V}_{ \pm}
\end{array}\right)
$$

- $\hat{H}(s)=\Phi(s V) \hat{K}(s) \Phi(s V)^{-1}, \Phi(s V)$ isomorphism on $\dot{\mathcal{E}}$.

Meromorphic extension

Mazzeo-Melrose result does not directly apply for quadratic pencil.
$u \mapsto \mathrm{e}^{-\mathrm{i} s V_{+} t} u \rightsquigarrow \lim _{r \rightarrow r_{+}} V(r)=0$. Let $w(x):=\sqrt{\left(r-r_{-}\right)\left(r_{+}-r\right)}$,
$i_{ \pm}, j_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below, $\tilde{V}_{ \pm}:=V \mp j_{\mp}^{2} r_{-}^{-1}$ and

$$
\hat{H}(s):=\left(\begin{array}{cc}
0 & \text { Id } \\
P-s^{2} V^{2} & 2 s V
\end{array}\right), \quad \hat{H}_{ \pm}(s):=\left(\begin{array}{cc}
0 & \text { Id } \\
P-s^{2} \tilde{V}_{ \pm}^{2} & 2 s \tilde{V}_{ \pm}
\end{array}\right)
$$

- $\hat{H}(s)=\Phi(s V) \hat{K}(s) \Phi(s V)^{-1}, \Phi(s V)$ isomorphism on $\dot{\mathcal{E}}$.
- $\hat{H}_{ \pm}(s)$ defined on the following energy spaces $\left(\mathcal{H}=L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}, \mathrm{~d} x \mathrm{~d} \omega\right)\right)$

$$
\begin{aligned}
\dot{\mathcal{E}}_{+} & :=\left(P-s^{2} \tilde{V}_{+}^{2}\right)^{-1 / 2} \mathcal{H} \oplus \mathcal{H} \\
\dot{\mathcal{E}}_{-} & :=\Phi\left(s V_{-}\right)^{-1}\left(\left(P-s^{2}\left(\tilde{V}_{-}-V_{-}\right)\right)^{-1 / 2} \mathcal{H} \oplus \mathcal{H}\right)
\end{aligned}
$$

Proposition (Georgescu-Gérard-Häfner, 2017)

There exists $\varepsilon>0$ such that, for all $\delta>0, w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}$ and $w^{\delta}\left(\hat{H}_{ \pm}(s)-z\right)^{-1} w^{\delta}$ extend meromorphically from \mathbb{C}^{+}to $\{\omega \in \mathbb{C} \mid \Im \omega \geq \varepsilon\}$ as compact operators. The poles are called resonances (noted $\operatorname{Res}(p)$).

Meromorphic extension

- We introduce the operator

$$
Q(s, z):=\sum_{ \pm} i_{ \pm}^{2}\left(\hat{H}_{ \pm}(s)-z\right)^{-1}
$$

Then

$$
w^{\delta} Q(s, z) w^{\delta}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))
$$

where $\mathcal{K}(s, z)$ is compact. Since $\hat{H}(0)=\hat{H}_{ \pm}(0)$, we have $\mathcal{K}(0, z)=0$.

Meromorphic extension

- We introduce the operator

$$
Q(s, z):=\sum_{ \pm} i_{ \pm}^{2}\left(\hat{H}_{ \pm}(s)-z\right)^{-1}
$$

Then

$$
w^{\delta} Q(s, z) w^{\delta}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))
$$

where $\mathcal{K}(s, z)$ is compact. Since $\hat{H}(0)=\hat{H}_{ \pm}(0)$, we have $\mathcal{K}(0, z)=0$.

- By multidimensional analytic Fredholm theory, there exist $\varepsilon>0$ and a subvariety $S \subset D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\}$ such that $\operatorname{Id}+\mathcal{K}(s, z)$ is invertible on $D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\} \backslash S$.

Meromorphic extension

- We introduce the operator

$$
Q(s, z):=\sum_{ \pm} i_{ \pm}^{2}\left(\hat{H}_{ \pm}(s)-z\right)^{-1}
$$

Then

$$
w^{\delta} Q(s, z) w^{\delta}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))
$$

where $\mathcal{K}(s, z)$ is compact. Since $\hat{H}(0)=\hat{H}_{ \pm}(0)$, we have $\mathcal{K}(0, z)=0$.

- By multidimensional analytic Fredholm theory, there exist $\varepsilon>0$ and a subvariety $S \subset D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\}$ such that $\operatorname{Id}+\mathcal{K}(s, z)$ is invertible on $D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\} \backslash S$.
- Assume that $\left(s_{n}, z_{n}\right) \in D(0,1 / n) \times\{|\Re z|<R / 2,|\Im z|<\varepsilon / 2\}$ is such that $\left(s_{n}, z_{n}\right) \rightarrow\left(0, z_{0}\right)$ and $\operatorname{Id}+\mathcal{K}\left(s_{n}, z_{n}\right)$ is not invertible for all $n \geq 1$. But $\mathrm{Id}+\mathcal{K}\left(0, z_{0}\right)=\mathrm{Id}$ is invertible, a contradiction.

Meromorphic extension

- We introduce the operator

$$
Q(s, z):=\sum_{ \pm} i_{ \pm}^{2}\left(\hat{H}_{ \pm}(s)-z\right)^{-1}
$$

Then

$$
w^{\delta} Q(s, z) w^{\delta}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))
$$

where $\mathcal{K}(s, z)$ is compact. Since $\hat{H}(0)=\hat{H}_{ \pm}(0)$, we have $\mathcal{K}(0, z)=0$.

- By multidimensional analytic Fredholm theory, there exist $\varepsilon>0$ and a subvariety $S \subset D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\}$ such that $\operatorname{Id}+\mathcal{K}(s, z)$ is invertible on $D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\} \backslash S$.
- Assume that $\left(s_{n}, z_{n}\right) \in D(0,1 / n) \times\{|\Re z|<R / 2,|\Im z|<\varepsilon / 2\}$ is such that $\left(s_{n}, z_{n}\right) \rightarrow\left(0, z_{0}\right)$ and $\operatorname{Id}+\mathcal{K}\left(s_{n}, z_{n}\right)$ is not invertible for all $n \geq 1$. But Id $+\mathcal{K}\left(0, z_{0}\right)=$ Id is invertible, a contradiction.
- For $(s, z) \in D\left(0, s_{0}\right) \times\{|\Re z|<R / 2,|\Im z|<\varepsilon / 2\}$ with s_{0} small enough,

$$
w^{\delta} Q(s, z) w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))^{-1}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}
$$

Meromorphic extension

- We introduce the operator

$$
Q(s, z):=\sum_{ \pm} i_{ \pm}^{2}\left(\hat{H}_{ \pm}(s)-z\right)^{-1}
$$

Then

$$
w^{\delta} Q(s, z) w^{\delta}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))
$$

where $\mathcal{K}(s, z)$ is compact. Since $\hat{H}(0)=\hat{H}_{ \pm}(0)$, we have $\mathcal{K}(0, z)=0$.

- By multidimensional analytic Fredholm theory, there exist $\varepsilon>0$ and a subvariety $S \subset D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\}$ such that $\operatorname{Id}+\mathcal{K}(s, z)$ is invertible on $D(0,1) \times\{|\Re z|<R,|\Im z|<\varepsilon\} \backslash S$.
- Assume that $\left(s_{n}, z_{n}\right) \in D(0,1 / n) \times\{|\Re z|<R / 2,|\Im z|<\varepsilon / 2\}$ is such that $\left(s_{n}, z_{n}\right) \rightarrow\left(0, z_{0}\right)$ and $\operatorname{Id}+\mathcal{K}\left(s_{n}, z_{n}\right)$ is not invertible for all $n \geq 1$. But Id $+\mathcal{K}\left(0, z_{0}\right)=I d$ is invertible, a contradiction.
- For $(s, z) \in D\left(0, s_{0}\right) \times\{|\Re z|<R / 2,|\Im z|<\varepsilon / 2\}$ with s_{0} small enough,

$$
w^{\delta} Q(s, z) w^{\delta}(\operatorname{Id}+\mathcal{K}(s, z))^{-1}=w^{\delta}(\hat{H}(s)-z)^{-1} w^{\delta}
$$

\Longrightarrow Resonances of $\hat{H}(s)$ are those of $\hat{H}_{ \pm}(s)$ near 0 .

Localization of high frequency resonances

Extension of Sà-Barreto-Zworski, Sjöstrand results:

Proposition (B., 2018)

There exist $K>0$ and $\theta>0$ such that, for any $C>0$, there exists an injective $\operatorname{map} \tilde{b}: \Gamma \rightarrow \operatorname{Res}(p)$ with

$$
\Gamma=\frac{\sqrt{F(\mathfrak{r})}}{\mathfrak{r}}\left(\pm \mathbb{N} \backslash\{0\} \pm \frac{1}{2}+\frac{q Q}{\sqrt{F(\mathfrak{r})}}-\frac{i}{2} \sqrt{\left|3-\frac{12 M}{\mathfrak{r}}+\frac{10 Q^{2}}{\mathfrak{r}^{2}}\right|}\left(\mathbb{N}+\frac{1}{2}\right)\right)
$$

the set of pseudo-poles, such that all the poles in

$$
\Omega_{C}=\{\lambda \in \mathbb{C}| | \lambda \mid>K, \Im \lambda>-\max \{C, \theta|\Re \lambda|\}\}
$$

are in the image of \tilde{b}. Furthermore, if $\mu \in \Gamma$ and $\tilde{b}(\mu) \in \Omega_{C}$, then

$$
\lim _{|\mu| \rightarrow+\infty}(\tilde{b}(\mu)-\mu)=0
$$

Localization of high frequency resonances

Extension of Sà-Barreto-Zworski, Sjöstrand results:

Proposition (B., 2018)

There exist $K>0$ and $\theta>0$ such that, for any $C>0$, there exists an injective $\operatorname{map} \tilde{b}: \Gamma \rightarrow \operatorname{Res}(p)$ with

$$
\Gamma=\frac{\sqrt{F(\mathfrak{r})}}{\mathfrak{r}}\left(\pm \mathbb{N} \backslash\{0\} \pm \frac{1}{2}+\frac{q Q}{\sqrt{F(\mathfrak{r})}}-\frac{i}{2} \sqrt{\left|3-\frac{12 M}{\mathfrak{r}}+\frac{10 Q^{2}}{\mathfrak{r}^{2}}\right|}\left(\mathbb{N}+\frac{1}{2}\right)\right)
$$

the set of pseudo-poles, such that all the poles in

$$
\Omega_{C}=\{\lambda \in \mathbb{C}| | \lambda \mid>K, \Im \lambda>-\max \{C, \theta|\Re \lambda|\}\}
$$

are in the image of \tilde{b}. Furthermore, if $\mu \in \Gamma$ and $\tilde{b}(\mu) \in \Omega_{C}$, then

$$
\lim _{|\mu| \rightarrow+\infty}(\tilde{b}(\mu)-\mu)=0
$$

- Semicalssical problem: $p_{h}(\sqrt{z}, s)=-h^{2} \partial_{x}^{2}+W(h)-(\sqrt{z}-h s V)^{2} \Longrightarrow$ shift: z pseudo-pole for wave operator, $(\sqrt{z}-h s V(0))^{2}$ pseudo-pole for P_{h}.

Localization of high frequency resonances

Extension of Sà-Barreto-Zworski, Sjöstrand results:

Proposition (B., 2018)

There exist $K>0$ and $\theta>0$ such that, for any $C>0$, there exists an injective map $\tilde{b}: \Gamma \rightarrow \operatorname{Res}(p)$ with

$$
\Gamma=\frac{\sqrt{F(\mathfrak{r})}}{\mathfrak{r}}\left(\pm \mathbb{N} \backslash\{0\} \pm \frac{1}{2}+\frac{q Q}{\sqrt{F(\mathfrak{r})}}-\frac{i}{2} \sqrt{\left|3-\frac{12 M}{\mathfrak{r}}+\frac{10 Q^{2}}{\mathfrak{r}^{2}}\right|}\left(\mathbb{N}+\frac{1}{2}\right)\right)
$$

the set of pseudo-poles, such that all the poles in

$$
\Omega_{C}=\{\lambda \in \mathbb{C}| | \lambda \mid>K, \Im \lambda>-\max \{C, \theta|\Re \lambda|\}\}
$$

are in the image of \tilde{b}. Furthermore, if $\mu \in \Gamma$ and $\tilde{b}(\mu) \in \Omega_{C}$, then

$$
\lim _{|\mu| \rightarrow+\infty}(\tilde{b}(\mu)-\mu)=0
$$

- Semicalssical problem: $p_{h}(\sqrt{z}, s)=-h^{2} \partial_{x}^{2}+W(h)-(\sqrt{z}-h s V)^{2} \Longrightarrow$ shift: z pseudo-pole for wave operator, $(\sqrt{z}-h s V(0))^{2}$ pseudo-pole for P_{h}.
- $\hat{R}(z, s):=(\hat{K}(s)-z)^{-1} . \forall z_{0} \in \operatorname{Res}(p)$ of multiplicity $m\left(z_{0}\right), \forall k>-m\left(z_{0}\right)$

$$
\Pi_{j, k}^{\chi}:=\frac{1}{2 \pi \mathrm{i}} \oint \frac{(-\mathrm{i})^{k}}{k!} \chi \hat{R}(z) \chi\left(z-z_{0}\right)^{k} \mathrm{~d} z \quad \chi \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R}, \mathbb{R})
$$

Resonances expansion of the local propagator

Theorem (B., 2018)

1. There exist $\delta, N>0$ and a discrete set $\mathscr{S} \subset \mathbb{C}$ such that for all $\nu \in \mathbb{R} \backslash \mathscr{S}$ with $0<\nu<\delta$ and for all $u \in \dot{\mathcal{E}}$ with $\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{N} u \in \dot{\mathcal{E}}$, we have for s small enough and $t \gg 0$

$$
\chi \mathrm{e}^{-\mathrm{i} t \hat{\kappa}} \chi u=\sum_{\substack{\left.z_{j} \in \operatorname{Res}(p) \\ \Im z_{j}\right\rangle-\nu}} \sum_{k=0}^{m\left(z_{j}\right)} \mathrm{e}^{-\mathrm{i} z_{j} t} t^{k} \Pi_{j, k}^{\chi} u+\mathcal{O}\left(\mathrm{e}^{-\nu t}\left\|\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{N} u\right\|_{\dot{\mathcal{E}}}\right) .
$$

2. There exists $\varepsilon>0$ such that, for any increasing positive function g with $\lim _{x \rightarrow+\infty} g(x)=+\infty$ and $g(x) \leq x$ for $x \gg 0$, for all $u \in \dot{\mathcal{E}}$ with $g\left(-\Delta_{\mathbb{S}^{2}}\right) u \in \dot{\mathcal{E}}$ and s small enough, we have for $t \gg 0$

$$
\left\|\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi u\right\|_{\dot{\mathcal{E}}} \lesssim\left(g\left(\mathrm{e}^{\varepsilon t}\right)\right)^{-1}\left\|g\left(-\Delta_{\mathbb{S}^{2}}\right) u\right\|_{\dot{\mathcal{E}}}
$$

Resonances expansion of the local propagator

Theorem (B., 2018)

1. There exist $\delta, N>0$ and a discrete set $\mathscr{S} \subset \mathbb{C}$ such that for all $\nu \in \mathbb{R} \backslash \mathscr{S}$ with $0<\nu<\delta$ and for all $u \in \dot{\mathcal{E}}$ with $\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{N} u \in \dot{\mathcal{E}}$, we have for s small enough and $t \gg 0$

$$
\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi u=\sum_{\substack{\left.z_{j} \in \operatorname{Res}(p) \\ \Im z_{j}\right\rangle-\nu}} \sum_{k=0}^{m\left(z_{j}\right)} \mathrm{e}^{-\mathrm{i} z_{j} t} t^{k} \Pi_{j, k}^{\chi} u+\mathcal{O}\left(\mathrm{e}^{-\nu t}\left\|\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{N} u\right\|_{\dot{\mathcal{E}}}\right) .
$$

2. There exists $\varepsilon>0$ such that, for any increasing positive function g with $\lim _{x \rightarrow+\infty} g(x)=+\infty$ and $g(x) \leq x$ for $x \gg 0$, for all $u \in \dot{\mathcal{E}}$ with $g\left(-\Delta_{\mathbb{S}^{2}}\right) u \in \dot{\mathcal{E}}$ and s small enough, we have for $t \gg 0$

$$
\left\|\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi u\right\|_{\dot{\mathcal{E}}} \lesssim\left(g\left(\mathrm{e}^{\varepsilon t}\right)\right)^{-1}\left\|g\left(-\Delta_{\mathbb{S}^{2}}\right) u\right\|_{\dot{\mathcal{E}}}
$$

- Extension of Bony-Häfner result for the wave equation in De Sitter-Schwarzschild spacetime : adaptation of the arguments by perturbation for small.

Resonances expansion of the local propagator

Theorem (B., 2018)

1. There exist $\delta, N>0$ and a discrete set $\mathscr{S} \subset \mathbb{C}$ such that for all $\nu \in \mathbb{R} \backslash \mathscr{S}$ with $0<\nu<\delta$ and for all $u \in \dot{\mathcal{E}}$ with $\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{N} u \in \dot{\mathcal{E}}$, we have for s small enough and $t \gg 0$

$$
\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi u=\sum_{\substack{\left.z_{j} \in \operatorname{Res}(p) \\ \Im z_{j}\right\rangle-\nu}} \sum_{k=0}^{m\left(z_{j}\right)} \mathrm{e}^{-\mathrm{i} z_{j} t} t^{k} \Pi_{j, k}^{\chi} u+\mathcal{O}\left(\mathrm{e}^{-\nu t}\left\|\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{N} u\right\|_{\dot{\mathcal{E}}}\right) .
$$

2. There exists $\varepsilon>0$ such that, for any increasing positive function g with $\lim _{x \rightarrow+\infty} g(x)=+\infty$ and $g(x) \leq x$ for $x \gg 0$, for all $u \in \dot{\mathcal{E}}$ with $g\left(-\Delta_{\mathbb{S}^{2}}\right) u \in \dot{\mathcal{E}}$ and s small enough, we have for $t \gg 0$

$$
\left\|\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi u\right\|_{\dot{\mathcal{E}}} \lesssim\left(g\left(\mathrm{e}^{\varepsilon t}\right)\right)^{-1}\left\|g\left(-\Delta_{\mathbb{S}^{2}}\right) u\right\|_{\dot{\varepsilon}}
$$

- Extension of Bony-Häfner result for the wave equation in De Sitter-Schwarzschild spacetime : adaptation of the arguments by perturbation for s small.
- Part 2. \Longrightarrow integrability of local energy if $\left(\ln \left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle\right)^{\alpha} u \in \dot{\mathcal{E}}$ for some $\alpha>1$, exponential decay if $\left\langle-\Delta_{\mathbb{S}^{2}}\right\rangle^{\beta} u \in \dot{\mathcal{E}}$ for some $\beta>0$.

Frequency regions

$-\Delta_{\mathbb{S}^{2}} \rightsquigarrow \ell(\ell+1)$. The proof is based on estimates for $\chi p_{\ell}(z, s)^{-1} \chi$ uniformly in $\ell \in \mathbb{N}$. We distinguish four regimes:

- Zone I (low frequencies): multidimensional Fredholm theory + Georgescu-Gérard-Häfner + study of the frequency 0 (Bony-Häfner, Bachelot).

Frequency regions

$-\Delta_{\mathbb{S}^{2}} \rightsquigarrow \ell(\ell+1)$. The proof is based on estimates for $\chi p_{\ell}(z, s)^{-1} \chi$ uniformly in $\ell \in \mathbb{N}$. We distinguish four regimes:

- Zone I (low frequencies): multidimensional Fredholm theory + Georgescu-Gérard-Häfner + study of the frequency 0 (Bony-Häfner, Bachelot).
- Zone II (lifting zone): complex scaling (Zworski).

Frequency regions

$-\Delta_{\mathbb{S}^{2}} \rightsquigarrow \ell(\ell+1)$. The proof is based on estimates for $\chi p_{\ell}(z, s)^{-1} \chi$ uniformly in $\ell \in \mathbb{N}$. We distinguish four regimes:

- Zone I (low frequencies): multidimensional Fredholm theory + Georgescu-Gérard-Häfner + study of the frequency 0 (Bony-Häfner, Bachelot).
- Zone II (lifting zone): complex scaling (Zworski).
- Zone III (trapping zone): well-posed Grushin problem for normally hyperbolic trapping (Bony-Michel, Tang-Zworski, Sjöstrand, Wunsch-Zworski, Burq).

Frequency regions

$-\Delta_{\mathbb{S}^{2}} \rightsquigarrow \ell(\ell+1)$. The proof is based on estimates for $\chi p_{\ell}(z, s)^{-1} \chi$ uniformly in $\ell \in \mathbb{N}$. We distinguish four regimes:

- Zone I (low frequencies): multidimensional Fredholm theory + Georgescu-Gérard-Häfner + study of the frequency 0 (Bony-Häfner, Bachelot).
- Zone II (lifting zone): complex scaling (Zworski).
- Zone III (trapping zone): well-posed Grushin problem for normally hyperbolic trapping (Bony-Michel, Tang-Zworski, Sjöstrand, Wunsch-Zworski, Burq).
- Zone IV (high frequencies): semiclassical limiting absorption principle for quadratic pencil + estimate with F.B.I. transform (Martinez).

Contour deformation

Let $\mu, \nu>0$. We have

$$
\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty+\mathrm{i} \mu}^{+\infty+\mathrm{i} \mu} \mathrm{e}^{-\mathrm{i} z t} \chi \hat{R}(z) \chi \mathrm{d} z
$$

as operators from $\dot{\mathcal{E}}$ to $\dot{\mathcal{E}}^{-2}:=(\hat{K}(s)-\omega)^{2} \dot{\mathcal{E}}$ ($\Im \omega$ sufficiently large). Then

$$
\begin{aligned}
& \|\chi \hat{R}(z) \chi u\|_{\dot{\mathcal{E}}} \lesssim\langle z\rangle\left\|\tilde{\chi} p(z ; s)^{-1} \tilde{\chi} u\right\| \quad(\tilde{\chi} \chi=\chi), \\
& \left\|\chi \hat{R}_{\ell}(z) \chi u\right\|_{\dot{\mathcal{E}}^{-2}} \lesssim\langle z\rangle^{-2}\left\|\chi \hat{R}_{\ell}(z) \chi u\right\|_{\dot{\mathcal{E}}}
\end{aligned}
$$

Contour deformation

Let $\mu, \nu>0$. We have

$$
\chi \mathrm{e}^{-\mathrm{i} t \hat{K}} \chi=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty+\mathrm{i} \mu}^{+\infty+\mathrm{i} \mu} \mathrm{e}^{-\mathrm{i} z t} \chi \hat{R}(z) \chi \mathrm{d} z
$$

as operators from $\dot{\mathcal{E}}$ to $\dot{\mathcal{E}}^{-2}:=(\hat{K}(s)-\omega)^{2} \dot{\mathcal{E}}$ (§ ω sufficiently large). Then

$$
\begin{aligned}
& \|\chi \hat{R}(z) \chi u\|_{\dot{\mathcal{E}}} \lesssim\langle z\rangle\left\|\tilde{\chi} p(z ; s)^{-1} \tilde{\chi} u\right\| \quad(\tilde{\chi} \chi=\chi), \\
& \left\|\chi \hat{R}_{\ell}(z) \chi u\right\|_{\dot{\mathcal{E}}^{-2}} \lesssim\langle z\rangle^{-2}\left\|\chi \hat{R}_{\ell}(z) \chi u\right\|_{\dot{\mathcal{E}}}
\end{aligned}
$$

1. We integrate $\mathrm{e}^{-\mathrm{i} z t} \chi \hat{R}(z) \chi$ over the following contour:

Contour deformation

Let $\mu, \nu>0$. We have

$$
\chi \mathrm{e}^{-\mathrm{i} t \hat{\kappa}} \chi=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty+\mathrm{i} \mu}^{+\infty+\mathrm{i} \mu} \mathrm{e}^{-\mathrm{i} z t} \chi \hat{R}(z) \chi \mathrm{d} z
$$

as operators from $\dot{\mathcal{E}}$ to $\dot{\mathcal{E}}^{-2}:=(\hat{K}(s)-\omega)^{2} \dot{\mathcal{E}}$ (§ ω sufficiently large). Then

$$
\begin{aligned}
& \|\chi \hat{R}(z) \chi u\|_{\dot{\mathcal{E}}} \lesssim\langle z\rangle\left\|\tilde{\chi} p(z ; s)^{-1} \tilde{\chi} u\right\| \quad(\tilde{\chi} \chi=\chi), \\
& \left\|\chi \hat{R}_{\ell}(z) \chi u\right\|_{\dot{\mathcal{E}}^{-2}} \lesssim\langle z\rangle^{-2}\left\|\chi \hat{R}_{\ell}(z) \chi u\right\|_{\dot{\mathcal{E}}}
\end{aligned}
$$

2. Letting $K \rightarrow+\infty$ and using the above estimates on $\chi \hat{R}_{\ell}(z) \chi$ and $\chi p_{\ell}(z, s)^{-1} \chi$ as well as residue theorem gives the expansion.

Asymptotic dynamics
Let $i_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below:

Asymptotic dynamics

Let $i_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below:

- Asymptotic equations:

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V_{ \pm}\right)^{2} u-\partial_{x}^{2} u=0 . \tag{4}
\end{equation*}
$$

Asymptotic dynamics
Let $i_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below:

- Asymptotic equations:

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V_{ \pm}\right)^{2} u-\partial_{x}^{2} u=0 \tag{4}
\end{equation*}
$$

- Positive conserved energies: for u solution of (4),

$$
\langle u \mid u\rangle_{s V_{ \pm}}=\|\left(\partial_{t}-\text { is } V_{ \pm}\right) u \|^{2}+\left\langle-\partial_{x}^{2} u, u\right\rangle>0
$$

Asymptotic dynamics
Let $i_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below:

- Asymptotic equations:

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V_{ \pm}\right)^{2} u-\partial_{x}^{2} u=0 \tag{4}
\end{equation*}
$$

- Positive conserved energies: for u solution of (4),

$$
\langle u \mid u\rangle_{s V_{ \pm}}=\|\left(\partial_{t}-\text { is } V_{ \pm}\right) u \|^{2}+\left\langle-\partial_{x}^{2} u, u\right\rangle>0 .
$$

- Asymptotic operators and energy spaces:

$$
\hat{H}_{ \pm}(s):=\left(\begin{array}{cc}
0 & \text { Id } \\
P-s^{2} V_{ \pm}^{2} & 2 s V_{ \pm}
\end{array}\right) \quad \text { on } \quad \dot{\mathcal{E}}_{ \pm}:=\overline{\mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \times \mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right)^{\langle\cdot \mid \cdot\rangle_{s V_{ \pm}}} .}
$$

Asymptotic dynamics
Let $i_{ \pm} \in \mathcal{C}^{\infty}(\mathbb{R},[0,1])$ as below:

- Asymptotic equations:

$$
\begin{equation*}
\left(\partial_{t}-\mathrm{i} s V_{ \pm}\right)^{2} u-\partial_{x}^{2} u=0 \tag{4}
\end{equation*}
$$

- Positive conserved energies: for u solution of (4),

$$
\langle u \mid u\rangle_{s V_{ \pm}}=\|\left(\partial_{t}-\text { is } V_{ \pm}\right) u \|^{2}+\left\langle-\partial_{x}^{2} u, u\right\rangle>0 .
$$

- Asymptotic operators and energy spaces:

$$
\hat{H}_{ \pm}(s):=\left(\begin{array}{cc}
0 & \text { Id } \\
P-s^{2} V_{ \pm}^{2} & 2 s V_{ \pm}
\end{array}\right) \quad \text { on } \quad \dot{\mathcal{E}}_{ \pm}:=\overline{\mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right) \times \mathcal{C}_{\mathrm{C}}^{\infty}\left(\mathbb{R} \times \mathbb{S}^{2}\right)^{\langle\cdot \mid \cdot\rangle_{s V_{ \pm}}} .}
$$

- For all $\ell \in \mathbb{N}$, set $Z_{\ell}:=\mathbb{1}_{\ell(\ell+1)}\left(-\Delta_{\mathbb{S}^{2}}\right) L^{2}\left(\mathbb{R} \times \mathbb{S}^{2}, \mathrm{~d} x \mathrm{~d} \omega\right)$ and let

$$
W_{\ell}:=\left(Z_{\ell} \otimes L^{2}(\mathbb{R}, \mathrm{~d} x)\right)^{\oplus 2}, \quad \dot{\mathcal{E}}_{ \pm}^{\mathrm{fin}}:=\left\{u \in \dot{\mathcal{E}}_{ \pm} \mid \exists L>0, u \in \underset{\ell \leq L}{\oplus}\left(\dot{\mathcal{E}}_{ \pm} \cap W_{\ell}\right)\right\} .
$$

Asymptotic completeness

Theorem (Georgescu-Gérard-Häfner, 2017)
Assume s sufficiently small.

1. For all $u \in \dot{\mathcal{E}}_{ \pm}^{\text {fin }}$, the limits

$$
W_{ \pm}(s) u=\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}_{ \pm}(s)} u
$$

exist in $\dot{\mathcal{E}}$. The wave operators $W_{ \pm}$extend to bounded operators $W_{ \pm}(s) \in \mathcal{B}\left(\dot{\mathcal{E}}_{ \pm}, \dot{\mathcal{E}}\right)$.

Asymptotic completeness

Theorem (Georgescu-Gérard-Häfner, 2017)
Assume s sufficiently small.

1. For all $u \in \dot{\mathcal{E}}_{ \pm}^{\text {fin }}$, the limits

$$
W_{ \pm}(s) u=\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}_{ \pm}(s)} u
$$

exist in $\dot{\mathcal{E}}$. The wave operators $W_{ \pm}$extend to bounded operators $W_{ \pm}(s) \in \mathcal{B}\left(\dot{\mathcal{E}}_{ \pm}, \dot{\mathcal{E}}\right)$.
2. The inverse wave operators

$$
\Omega_{ \pm}(s)=\mathrm{s}-\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}_{ \pm}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}(s)}
$$

exist in $\mathcal{B}\left(\dot{\mathcal{E}}, \dot{\mathcal{E}}_{ \pm}\right)$.

Asymptotic completeness

Theorem (Georgescu-Gérard-Häfner, 2017)
Assume s sufficiently small.

1. For all $u \in \dot{\mathcal{E}}_{ \pm}^{\text {fin }}$, the limits

$$
W_{ \pm}(s) u=\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}_{ \pm}(s)} u
$$

exist in $\dot{\mathcal{E}}$. The wave operators $W_{ \pm}$extend to bounded operators $W_{ \pm}(s) \in \mathcal{B}\left(\dot{\mathcal{E}}_{ \pm}, \dot{\mathcal{E}}\right)$.
2. The inverse wave operators

$$
\Omega_{ \pm}(s)=\mathrm{s}-\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}_{ \pm}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}(s)}
$$

exist in $\mathcal{B}\left(\dot{\mathcal{E}}, \dot{\mathcal{E}}_{ \pm}\right)$.

- Same result for the charged KG equation in De Sitter-Kerr spacetime with restricted asymptotic energy spaces in angular directions (restriction of operators and spaces to $\left.\operatorname{ker}\left(\partial_{\phi}-n\right), n \in \mathbb{Z}\right)$.

Asymptotic completeness

Theorem (Georgescu-Gérard-Häfner, 2017)
Assume s sufficiently small.

1. For all $u \in \dot{\mathcal{E}}_{ \pm}^{\text {fin }}$, the limits

$$
W_{ \pm}(s) u=\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}_{ \pm}(s)} u
$$

exist in $\dot{\mathcal{E}}$. The wave operators $W_{ \pm}$extend to bounded operators $W_{ \pm}(s) \in \mathcal{B}\left(\dot{\mathcal{E}}_{ \pm}, \dot{\mathcal{E}}\right)$.
2. The inverse wave operators

$$
\Omega_{ \pm}(s)=\mathrm{s}-\lim _{t \rightarrow+\infty} \mathrm{e}^{\mathrm{i} t \hat{H}_{ \pm}(s)} i_{ \pm}^{2} \mathrm{e}^{-\mathrm{i} t \hat{H}(s)}
$$

exist in $\mathcal{B}\left(\dot{\mathcal{E}}, \dot{\mathcal{E}}_{ \pm}\right)$.

- Same result for the charged KG equation in De Sitter-Kerr spacetime with restricted asymptotic energy spaces in angular directions (restriction of operators and spaces to $\left.\operatorname{ker}\left(\partial_{\phi}-n\right), n \in \mathbb{Z}\right)$.
- Existence and completeness of wave operators for the wave equation in Kerr spacetime with no angular restriction by Dafermos-Rodnianski-Shlapentokh-Rothman.

What happens when s becomes large?

- Whiting transformations do not seem to work.

What happens when s becomes large?

- Whiting transformations do not seem to work.
- Numerical investigation of long time behavior by Di Menza-Nicolas in Reissner-Nordström spacetime.

What happens when s becomes large?

- Whiting transformations do not seem to work.
- Numerical investigation of long time behavior by Di Menza-Nicolas in Reissner-Nordström spacetime.
- Numerical investigation of localization of low frequency resonances in De Sitter-Reissner-Nordström spacetime in progress.

Thank you for your attention!

