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where M > 0 is the black hole mass, Q # 0 its electric charge and A > 0 is the
cosmological constant.
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where Ric is Ricci tensor, R the scalar curvature and F = dA the
electromagnetic tensor.
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Under some assumptions on M, @ and A, F has four roots

rm <0< rc<r-<rs andis positive between r— and ri. The exterior DSRN
spacetime is the lorentzian manifold M =R; x Jr_, ry[, x S2, endowed with
the metric g.
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Geometric properties of the exterior DSRN spacetime

» Eternal, spherical, static and charged black hole.
» 3 Killing vector fields: 9; (timelike) 4+ 2 others (spherical symmetry).

» Noether's theorem + mass equation =—> 4 conserved quantities for the
geodesic motion: for v null geodesic,
g(%@t):EeR, g(778¢):L€R7 g(;y?;y):O’
= energy equation
E2— 4 F(;)Lz.
r

Trivial solution for r =t € Jr—, r.[ at which F(r)/r* is maximal
~~ Photon sphere R; x {t}, x S2.

F(r)/r?

t : : : r
r— T ry
This is the only photon sphere in the exterior DSRN spacetime
(4 roots for F, 1 photon sphere: see Mokdad).
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We introduce the operator P := rbrt

dx 1 _ . 2
T x(t) =0 (maximum of F/r%).

and the Regge-Wheeler coordinate

Principal symbol of P: €2 +7*W(x), W = F/r* ~» normally hyperbolic
trapping.

If u(t, x,w) = e v(x,w) solves (8; — isV)* u+ Pu = 0 for some z € C, then
Pv — (z — sV)?v = 0. This motivates us to define the quadratic pencil

p(z,s) =P —(z—sV)°.
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> Kerr's type topology (following the rotation):

(| (uo, un)|[3 := (Puo, uo) + ||uy — sVao||*.
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(0r —isV)? u+ Pu =0, (2)
then v := (u, —i0:u — sVu) solves the first order equation
. . - sV 1Id
—i0v = K(s)v, K(s) = < p sV) . (3)

Conversely, if v = (v, v1) solves (3), then v solves (2). K(s) is the charge
Klein-Gordon operator.

> Homogeneous energy space & := C°(R x S?) x C&°(R x §2) !'le .
> K(s) generates a continuous semi-group (e“k(s))teR on (&, I.ll)-

> Link between charge KG operator and quadratic pencil: Vz € p(K(s))

N 1 p(z,8) " (z—sV) p(z.5)7"
K="= (Id +(z=sV)p(z,5) " (z=sV) (z-sV)p(z, 5)_1) '
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Meromorphic extension

Mazzeo-Melrose result does not directly apply for quadratic pencil.

urs e Vi s lim, o, V(r) = 0. Let w(x) == /(r — r—)(rs — 1),
i, j+ € C(R,[0,1]) as below, Vi := V¥ j2r" and
. 0 Id , 0 Id
H(S) = (P _ 2|2 25\/) ) Hi(s) = (P _ SZVi 25\7ﬂ:) :

> H(s) = &(sV)K(s)d(sV) ™, d(sV) isomorphism on &.

> H.(s) defined on the following energy spaces (H = L?(R x S?, dxdw))
E = (P=s*V) VPN,
E=o(sV) H(P—S (Vo — Vo) PHeH).

Proposition (Georgescu-Gérard-Héafner, 2017)

There exists € > 0 such that, for all 6 > 0, w®(F(s) — z)"'w® and
w®(Hx(s) — z)*w’ extend meromorphically from C* to {w € C | Sw > ¢} as
compact operators. The poles are called resonances (noted Res(p)).
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» We introduce the operator

Then
s 5 S(h -1 5
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where K(s, z) is compact. Since H(0) = H(0), we have K(0, z) = 0.
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(sns2zn) — (0, 20) and Id + K(sn, z) is not invertible for all n > 1. But
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— Resonances of H(s) are those of Hy(s) near 0.



Localization of high frequency resonances

Extension of Sa-Barreto-Zworski, Sjostrand results:
Proposition (B., 2018)
There exist K > 0 and 6 > 0 such that, for any C > 0, there exists an injective

map b : I — Res(p) with
_ V() 1, qQ i 12M  10Q? 1
r=Y- <j:N\{O}ﬁ:2+ T(t)_Z\/‘3_ == (N+2)>

the set of pseudo-poles, such that all the poles in

Qc ={AeC ||\ > K,I\ > —max{C,0|R\|}}

are in the image of b. Furthermore, if u € T and b(u) € Qc, then
lim (b(p) — ) =0.
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Extension of Sa-Barreto-Zworski, Sjostrand results:

Proposition (B., 2018)
There exist K > 0 and 0 > 0 such that, for any C > 0, there exists an injective

map b : T — Res(p) with
r— F()<iN\{0}i 499 —\/‘ _@+IOQ2 (N—&-;))

NGD

the set of pseudo-poles, such that all the poles in
Qc={AeC ||\ > K, I\ > —max{C,0|R\|}}
are in the image of b. Furthermore, if u € T and b(u) € Qc, then
lim (b(p) —p) = 0.

[p|—+o00
> Semicalssical problem: p,(v/z,s) = —h?82 + W(h) — (v/z— hsV)? = shift:
z pseudo-pole for wave operator, (/z — hsV/(0))? pseudo-pole for Pj.
> R(z,s):= (k(s) —2)71. Vz € Res(p) of multiplicity m(z), Vk > —m(z)

k
M= Z C ) XR(2)x (z — 20)"dz X € C(R,R).




Resonances expansion of the local propagator

Theorem (B., 2018)

1. There exist 6, N > 0 and a discrete set . C C such that for all v € R\ .
with 0 < v < § and for all u € £ with (—Ag)"u € &, we have for s small
enough and t >0

(Zj)
xe Hyu= Z Z etk nu+0 (ef"tH(ngz)Nqu-) .
zj€Res(p) k=0
Sz_,->7u
2. There exists € > 0 such that, for any increasing positive function g with
limy— 400 g(x) = 400 and g(x) < x for x > 0, for all u € £ with

g(—Ag2)u € € and s small enough, we have for t >> 0

Ixe ™ xulle < (g(e™)) " llg(~As2)ull.
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Theorem (B., 2018)

1. There exist 6, N > 0 and a discrete set . C C such that for all v € R\ .
with 0 < v < § and for all u € £ with (—Ag)"u € &, we have for s small
enough and t >0
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Ixe™ " xulls < (g(e™)llg(—Lg)ule.

» Extension of Bony-Héafner result for the wave equation in De
Sitter-Schwarzschild spacetime : adaptation of the arguments by
perturbation for s small.
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with 0 < v < § and for all u € £ with (—Ag)"u € &, we have for s small
enough and t >0

m(z))
e Hyu = Z Z et ¢ I'Ij?fku + O (ef"tH(fASz)Nqu-) .
zj€Res(p) k=0
Szi>—v
2. There exists € > 0 such that, for any increasing positive function g with
liMy— 400 g(x) = +00 and g(x) < x for x > 0, for all u € £ with
g(—Ag)u € £ and s small enough, we have for t > 0

Ixe™ " xulls < (g(e™)llg(—Lg)ule.

» Extension of Bony-Héafner result for the wave equation in De
Sitter-Schwarzschild spacetime : adaptation of the arguments by
perturbation for s small.

> Part 2. = integrability of local energy if (In(—Ag))%u € & for some
a > 1, exponential decay if (—Ag)?u € € for some 8 > 0.



Frequency regions

—Ag ~ £(£ 4 1). The proof is based on estimates for xp¢(z,s)™*x uniformly
in £ € N. We distinguish four regimes:

iR zone Il
zone | N ’ﬂ”r 7777777777777777
\I\ ICO( : zone lll 1 zone IV
} R
“rT o JR 0/R "RY

» Zone | (low frequencies): multidimensional Fredholm theory 4+ Georgescu-
Gérard-Hafner + study of the frequency 0 (Bony-Héafner, Bachelot).
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Frequency regions

—Ag ~ £(£ 4 1). The proof is based on estimates for xp¢(z,s)™*x uniformly
in £ € N. We distinguish four regimes:

iR zone Il
zone | N _ﬂ__" ________________
\E\ ICO( : zone Ill | zone IV
} R
“rT o JR 0/R "RY
([ R o ___ 1
—iG

» Zone | (low frequencies): multidimensional Fredholm theory 4+ Georgescu-
Gérard-Hafner + study of the frequency 0 (Bony-Héafner, Bachelot).

» Zone Il (lifting zone): complex scaling (Zworski).

» Zone Il (trapping zone): well-posed Grushin problem for normally
hyperbolic trapping (Bony-Michel, Tang-Zworski, Sjéstrand,
Wounsch-Zworski, Burg).

» Zone IV (high frequencies): semiclassical limiting absorption principle for
quadratic pencil + estimate with F.B.I. transform (Martinez).



Contour deformation

Let pu,v > 0. We have

. 1 +oo+ip . .
Xe—ltKX = e—ltiR(z)XdZ
2mi —ootip
as operators from & to £72 := (K(s) — w)?£ (Sw sufficiently large). Then

IxR(2)xulle < (@) I%p(zis) "Rl (Fx =),
IxRe(2)xulle— < (2) 7 IxRe(2)xull s



Contour deformation
Let pu,v > 0. We have
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as operators from &€ to £72

IxR(z)xulle < (2)]
IxRe(2)xulls— <

1 +oo+ip . .
= 5= “xR(z)xdz
27i “
—oo+ip
= (K(s) — w)?€ (Sw sufficiently large). Then
[p(zis) 'Rull (Rx =x),
< (@) IxRe(2)xul ¢

1. We integrate e "'y R(z)x over the following contour:




Contour deformation

Let pu,v > 0. We have

. 1 +oo+ip . .
xe x=o— “xR(z)x dz
T oiin
as operators from & to £72 := (K(s) — w)?£ (Sw sufficiently large). Then

IxR(2)xulle < (@) I%p(zis) "Rl (Fx =),

IxRe(2)xullg— < (2)72
2. Letting K — +o0 and using the ab

IxRe(2)xulle

ove estimates on xR;(z)x and

xpe(z,5)"Tx as well as residue theorem gives the expansion.

ip
—Re R¢
t t
X X
,// —iv AN
X , Y X
x 7 X X X
.
x 7 X X \\\ X
// \\
.7 X X X ~
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Asymptotic dynamics

Let ix € C*(RR, [0, 1]) as below:

» Asymptotic equations:
(0 —isVi)’u— diu=0. (4)
> Positive conserved energies: for u solution of (4),
(uluysve = ||(8e — isVie)ul]® + (—DZu, u) > 0.

» Asymptotic operators and energy spaces:

[ L 0 Id 5 . oo 2 ) 2\ 1 )sv
Fii(s) == <P—52Vi 2sVi> on i :=CP(R x ) x CE(R x 8¢+«

> Forall £ €N, set Zy := Lypi1)(—Ag2 ) L*(R x S?, dxdw) and let
W= (Z ® PR, dx))®?, ' ={ueési|IL>0,uec @ (Exn W)}
<L



Asymptotic completeness

Theorem (Georgescu-Gérard-Hafner, 2017)

Assume s sufficiently small.

1. For all u € £ the limits
Wi(s)u= lim QltH0) 2 o it ()
t—+oo
exist in &. The wave operators W extend to bounded operators
Wi(s) € B(Ex,E).
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Asymptotic completeness

Theorem (Georgescu-Gérard-Hafner, 2017)

Assume s sufficiently small.
1. For all u € £ the limits

itH(s) -

2 —itH
i2e itHE()

Wi(s)u= lim e
t—+oo
exist in €. The wave operators W4 extend to bounded operators
Wi (s) € B(Ex, E).
2. The inverse wave operators

Qi(s) =s— lim eH+()3o7tH
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exist in B(E,Ex).

» Same result for the charged KG equation in De Sitter-Kerr spacetime with
restricted asymptotic energy spaces in angular directions (restriction of
operators and spaces to ker(dy — n), n € Z).



Asymptotic completeness

Theorem (Georgescu-Gérard-Hafner, 2017)

Assume s sufficiently small.

1. For all u € £, the limits
Wi(s)u= lim ei”:’(s)iie_m:’i(s)u
t—+oo
exist in €. The wave operators W4 extend to bounded operators
Wi (s) € B(Ex, E).
2. The inverse wave operators

Qi(s) =s— lim e“'ﬁ’i(s)iiefi”:’(s)

t—+oo

exist in B(E,Ex).

» Same result for the charged KG equation in De Sitter-Kerr spacetime with
restricted asymptotic energy spaces in angular directions (restriction of
operators and spaces to ker(dy — n), n € Z).

» Existence and completeness of wave operators for the wave equation in
Kerr spacetime with no angular restriction by
Dafermos-Rodnianski-Shlapentokh-Rothman.
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» Whiting transformations do not seem to work.
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What happens when s becomes large?

» Whiting transformations do not seem to work.

» Numerical investigation of long time behavior by Di Menza-Nicolas in
Reissner-Nordstrom spacetime.

» Numerical investigation of localization of low frequency resonances in De
Sitter-Reissner-Nordstréom spacetime in progress.



Thank you for your attention!




