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The exterior De Sitter-Reissner-Nordström (DSRN) spacetime

In Boyer-Lindquist coordinates (t, r , ω) ∈ Rt × ]0,+∞[r × S2
ω, the DSRN

metric g is given by

g = F (r)dt2 − F (r)−1dr 2 − r 2dω2, F (r) = 1− 2M
r + Q2

2r 2 −
Λr 2

3
where M > 0 is the black hole mass, Q 6= 0 its electric charge and Λ > 0 is the
cosmological constant.

Let Aµ = (Q/r) dt. Then (g ,Aµ) solves the Einstein-Maxwell field equation

Ricµν −
1
2Rgµν + Λgµν = Tµν , Tµν = 1

4gµνFσρFσρ −FµσF σ
ν

where Ric is Ricci tensor, R the scalar curvature and F = dA the
electromagnetic tensor.

Under some assumptions on M, Q and Λ, F has four roots
rn < 0 < rc < r− < r+ and is positive between r− and r+. The exterior DSRN
spacetime is the lorentzian manifoldM = Rt × ]r−, r+[r × S2

ω endowed with
the metric g .
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Geometric properties of the exterior DSRN spacetime

I Eternal, spherical, static and charged black hole.

I 3 Killing vector fields: ∂t (timelike) + 2 others (spherical symmetry).
I Noether’s theorem + mass equation =⇒ 4 conserved quantities for the

geodesic motion: for γ null geodesic,
g(γ̇, ∂t) = E ∈ R, g(γ̇, ∂φ) = L ∈ R, g(γ̇, γ̇) = 0.

=⇒ energy equation

E 2 = ṙ 2 + F (r)
r 2 L2.

Trivial solution for r = r ∈ ]r−, r+[ at which F (r)/r 2 is maximal
 Photon sphere Rt × {r}r × S2

ω.
F (r)/r 2

r
rr− r+

This is the only photon sphere in the exterior DSRN spacetime
(4 roots for F , 1 photon sphere: see Mokdad).
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Charged Klein-Gordon (KG) equation, quadratic pencil
Let q ∈ R and m > 0. We define the charged wave operator on (M, g)

�
 

g := (∇µ − iqAµ) (∇µ − iqAµ)
and the charged KG equation reads

�
 

g u + m2u = 0. (1)

Set s := qQ ∈ R the charge product and V (r) := r−1 so that (1) becomes

(∂t − isV )2 u + P̂u = 0, P̂ = − F
r 2 ∂r

(
r 2F∂r

)
− F

r 2 ∆S2 + m2F .

We introduce the operator P := r P̂r−1 and the Regge-Wheeler coordinate
dx
dr := 1

F (r) , x(r) = 0 (maximum of F/r 2).

Principal symbol of P: ξ2 + η2W (x), W = F/r 2  normally hyperbolic
trapping.

If u(t, x , ω) = eiztv(x , ω) solves (∂t − isV )2 u + Pu = 0 for some z ∈ C, then
Pv − (z − sV )2v = 0. This motivates us to define the quadratic pencil

p(z, s) := P − (z − sV )2.
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Superradiance

For ` ∈ R, the energies
〈u |u〉` := ‖(∂t − i`)u‖2 + 〈(P − (sV − `)2 )u, u〉

are formally conserved if u solves (∂t − isV )2 u + Pu = 0.

I Reissner-Nordström (Λ = 0): F (r)→ 1 as r → +∞, so for s small
〈u |u〉sV− & 〈−r−1∂x r2∂x r−1u, u〉+ 〈−r−2F∆S2 u, u〉

+ 〈(m2F − s2(V − V−)2)u, u〉 > 0

because F (r),V (r)− V− = Or→r−(r − r−).

I DSRN (Λ > 0): these energies are never positive.
Fix ` so that sV− − ` 6= 0, let f supported in ]−∞,−1[ such that
‖(∂t − i`)f ‖ = 0 and −∆S2 f = 0, and choose R � 0:
〈R−1/2f (x/R) |R−1/2f (x/R)〉`
= R−2‖R−1f ′(x/R)‖2 + 〈(r−1FF ′ + m2F − (sV − `)2)R−1/2f (x/R), R−1/2f (x/R)〉

= R−2‖f ′‖2 − (sV− − `)2
(

1 + oR→+∞(1)
)
‖f ‖2 < 0.

I Kerr’s type topology (following the rotation):
‖(u0, u1)‖2

Ė := 〈Pu0, u0〉+ ‖u1 − sVu0‖2.
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Charge Klein-Gordon operator

If u solves the second order equation

(∂t − isV )2 u + Pu = 0, (2)

then v := (u,−i∂tu − sVu) solves the first order equation

− i∂tv = K̂(s)v , K̂(s) =
(

sV Id
P sV

)
. (3)

Conversely, if v = (v0, v1) solves (3), then v0 solves (2). K̂(s) is the charge
Klein-Gordon operator.

I Homogeneous energy space Ė := C∞c (R× S2)× C∞c (R× S2) ‖.‖Ė .
I K̂(s) generates a continuous semi-group (eitK̂(s))t∈R on (Ė , ‖.‖Ė).
I Link between charge KG operator and quadratic pencil: ∀z ∈ ρ(K̂(s))

(K̂(s)− z)−1 =
(

p (z, s)−1 (z − sV ) p (z, s)−1

Id + (z − sV ) p (z, s)−1 (z − sV ) (z − sV ) p (z, s)−1

)
.
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I Link between charge KG operator and quadratic pencil: ∀z ∈ ρ(K̂(s))

(K̂(s)− z)−1 =
(

p (z, s)−1 (z − sV ) p (z, s)−1

Id + (z − sV ) p (z, s)−1 (z − sV ) (z − sV ) p (z, s)−1

)
.



References

I Localization of resonances:
Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).

I Resonance expansion in black hole type spacetimes: Bony-Häfner (De
Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De
Sitter-Kerr).

I Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski,
Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...

I Global non linear stability of De Sitter-Kerr by Hintz, Vasy.
I Scattering theory without positive conserved energy (Kako, Bachelot,

Gérard), Georgescu-Gérard-Häfner (De Sitter-Kerr),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



References

I Localization of resonances:
Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).

I Resonance expansion in black hole type spacetimes: Bony-Häfner (De
Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De
Sitter-Kerr).

I Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski,
Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...

I Global non linear stability of De Sitter-Kerr by Hintz, Vasy.
I Scattering theory without positive conserved energy (Kako, Bachelot,

Gérard), Georgescu-Gérard-Häfner (De Sitter-Kerr),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



References

I Localization of resonances:
Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).

I Resonance expansion in black hole type spacetimes: Bony-Häfner (De
Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De
Sitter-Kerr).

I Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski,
Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...

I Global non linear stability of De Sitter-Kerr by Hintz, Vasy.
I Scattering theory without positive conserved energy (Kako, Bachelot,

Gérard), Georgescu-Gérard-Häfner (De Sitter-Kerr),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



References

I Localization of resonances:
Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).

I Resonance expansion in black hole type spacetimes: Bony-Häfner (De
Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De
Sitter-Kerr).

I Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski,
Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...

I Global non linear stability of De Sitter-Kerr by Hintz, Vasy.

I Scattering theory without positive conserved energy (Kako, Bachelot,
Gérard), Georgescu-Gérard-Häfner (De Sitter-Kerr),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



References

I Localization of resonances:
Sá Barreto-Zworski (De Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr).

I Resonance expansion in black hole type spacetimes: Bony-Häfner (De
Sitter-Schwarzschild), Dyatlov (De Sitter-Kerr), Vasy (perturbations of De
Sitter-Kerr).

I Decay of linear waves on Kerr: Andersson-Blue, Dafermos-Rodnianski,
Tataru-Tohaneanu, Finster-Kamran-Smoller-Yau,...

I Global non linear stability of De Sitter-Kerr by Hintz, Vasy.
I Scattering theory without positive conserved energy (Kako, Bachelot,

Gérard), Georgescu-Gérard-Häfner (De Sitter-Kerr),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



Meromorphic extension

Mazzeo-Melrose result does not directly apply for quadratic pencil.

u 7→ e−isV+tu  limr→r+V (r) = 0. Let w(x) :=
√

(r − r−)(r+ − r),
i±, j± ∈ C∞(R, [0, 1]) as below, Ṽ± := V ∓ j2

∓r−1
− and

Ĥ(s) :=
(

0 Id
P − s2V 2 2sV

)
, Ĥ±(s) :=

(
0 Id

P − s2Ṽ 2
± 2sṼ±

)
.

I Ĥ(s) = Φ(sV )K̂(s)Φ(sV )−1, Φ(sV ) isomorphism on Ė .

ll

Proposition (Georgescu-Gérard-Häfner, 2017)

There exists ε > 0 such that, for all δ > 0, wδ(Ĥ(s)− z)−1wδ and
wδ(Ĥ±(s)− z)−1wδ extend meromorphically from C+ to {ω ∈ C | =ω ≥ ε} as
compact operators. The poles are called resonances (noted Res(p)).
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l i+

j+

i−

j−
x

0

1

l

Proposition (Georgescu-Gérard-Häfner, 2017)

There exists ε > 0 such that, for all δ > 0, wδ(Ĥ(s)− z)−1wδ and
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± 2sṼ±
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)
.

lProposition (Georgescu-Gérard-Häfner, 2017)

There exists ε > 0 such that, for all δ > 0, wδ(Ĥ(s)− z)−1wδ and
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Meromorphic extension

I We introduce the operator

Q(s, z) :=
∑
±

i2
±(Ĥ±(s)− z)−1.

Then
wδQ(s, z)wδ = wδ(Ĥ(s)− z)−1wδ(Id +K(s, z))

where K(s, z) is compact. Since Ĥ(0) = Ĥ±(0), we have K(0, z) = 0.

I By multidimensional analytic Fredholm theory, there exist ε > 0 and a
subvariety S ⊂ D(0, 1)× {|<z| < R, |=z| < ε} such that Id +K(s, z) is
invertible on D(0, 1)× {|<z| < R, |=z| < ε} \ S.
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Localization of high frequency resonances

Extension of Sà-Barreto-Zworski, Sjöstrand results:

Proposition (B., 2018)

There exist K > 0 and θ > 0 such that, for any C > 0, there exists an injective
map b̃ : Γ→ Res(p) with

Γ =
√

F (r)
r

(
±N \ {0} ± 1

2 + qQ√
F (r)

− i
2

√∣∣∣∣3− 12M
r

+ 10Q2

r2

∣∣∣∣ (N + 1
2

))
the set of pseudo-poles, such that all the poles in

ΩC = {λ ∈ C | |λ| > K ,=λ > −max{C , θ|<λ|}}

are in the image of b̃. Furthermore, if µ ∈ Γ and b̃(µ) ∈ ΩC , then
lim

|µ|→+∞
(b̃(µ)− µ) = 0.

l

I Semicalssical problem: ph(
√

z, s) = −h2∂2
x + W (h)− (

√
z −hsV )2 =⇒ shift:

z pseudo-pole for wave operator, (
√

z − hsV (0))2 pseudo-pole for Ph.
I R̂(z, s) := (K̂(s)− z)−1. ∀z0 ∈ Res(p) of multiplicity m(z0), ∀k > −m(z0)

Πχj,k := 1
2πi

∮
(−i)k

k! χR̂(z)χ (z − z0)kdz χ ∈ C∞c (R,R).
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Resonances expansion of the local propagator

Theorem (B., 2018)

1. There exist δ,N > 0 and a discrete set S ⊂ C such that for all ν ∈ R \S
with 0 < ν < δ and for all u ∈ Ė with 〈−∆S2〉Nu ∈ Ė , we have for s small
enough and t � 0

χe−itK̂χu =
∑

zj∈Res(p)
=zj>−ν

m(zj )∑
k=0

e−izj t tk Πχj,ku +O
(
e−νt‖〈−∆S2〉Nu‖Ė

)
.

2. There exists ε > 0 such that, for any increasing positive function g with
limx→+∞ g(x) = +∞ and g(x) ≤ x for x � 0, for all u ∈ Ė with
g(−∆S2 )u ∈ Ė and s small enough, we have for t � 0

‖χe−itK̂χu‖Ė . (g(eεt))−1‖g(−∆S2 )u‖Ė .

I Extension of Bony-Häfner result for the wave equation in De
Sitter-Schwarzschild spacetime : adaptation of the arguments by
perturbation for s small.

I Part 2. =⇒ integrability of local energy if (ln〈−∆S2〉)αu ∈ Ė for some
α > 1, exponential decay if 〈−∆S2〉βu ∈ Ė for some β > 0.
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α > 1, exponential decay if 〈−∆S2〉βu ∈ Ė for some β > 0.



Frequency regions

−∆S2  `(`+ 1). The proof is based on estimates for χp`(z, s)−1χ uniformly
in ` ∈ N. We distinguish four regimes:

=z = −C0 − C1 ln 〈z〉

iR

R0

iC0

−iC0

−R R `/R R`

zone I zone II

zone III zone IV

I Zone I (low frequencies): multidimensional Fredholm theory + Georgescu-
Gérard-Häfner + study of the frequency 0 (Bony-Häfner, Bachelot).

I Zone II (lifting zone): complex scaling (Zworski).
I Zone III (trapping zone): well-posed Grushin problem for normally

hyperbolic trapping (Bony-Michel, Tang-Zworski, Sjöstrand,
Wunsch-Zworski, Burq).

I Zone IV (high frequencies): semiclassical limiting absorption principle for
quadratic pencil + estimate with F.B.I. transform (Martinez).
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Contour deformation

Let µ, ν > 0. We have

χe−itK̂χ = 1
2πi

∫ +∞+iµ

−∞+iµ
e−iztχR̂(z)χ dz

as operators from Ė to Ė−2 := (K̂(s)− ω)2Ė (=ω sufficiently large). Then
‖χR̂(z)χu‖Ė . 〈z〉‖χ̃p(z; s)−1χ̃u‖ (χ̃χ = χ),

‖χR̂`(z)χu‖Ė−2 . 〈z〉−2‖χR̂`(z)χu‖Ė

2. Letting K → +∞ and using the above estimates on χR̂`(z)χ and
χp`(z, s)−1χ as well as residue theorem gives the expansion.
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‖χR̂`(z)χu‖Ė−2 . 〈z〉−2‖χR̂`(z)χu‖Ė
2. Letting K → +∞ and using the above estimates on χR̂`(z)χ and
χp`(z, s)−1χ as well as residue theorem gives the expansion.

−R` R`

−iν

iµ



Asymptotic dynamics

Let i± ∈ C∞(R, [0, 1]) as below:

i+i−

x
0

1

I Asymptotic equations:
(∂t − isV±)2u − ∂2

x u = 0. (4)

I Positive conserved energies: for u solution of (4),
〈u |u〉sV± = ‖(∂t − isV±)u‖2 + 〈−∂2

x u, u〉 > 0.

I Asymptotic operators and energy spaces:

Ĥ±(s) :=
(

0 Id
P − s2V 2

± 2sV±

)
on Ė± := C∞c (R× S2)× C∞c (R× S2)〈.|.〉sV±

I For all ` ∈ N, set Z` := 1`(`+1)(−∆S2 )L2(R× S2, dxdω) and let

W` := (Z` ⊗ L2(R, dx))⊕2, Ėfin± :=
{

u ∈ Ė± | ∃L > 0, u ∈ ⊕
`≤L

(Ė± ∩W`)
}
.
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u ∈ Ė± | ∃L > 0, u ∈ ⊕
`≤L
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Asymptotic completeness

Theorem (Georgescu-Gérard-Häfner, 2017)

Assume s sufficiently small.
1. For all u ∈ Ėfin± , the limits

W±(s)u = lim
t→+∞

eitĤ(s)i2
±e−itĤ±(s)u

exist in Ė . The wave operators W± extend to bounded operators
W±(s) ∈ B(Ė±, Ė).

2. The inverse wave operators

Ω±(s) = s− lim
t→+∞

eitĤ±(s)i2
±e−itĤ(s)

exist in B(Ė , Ė±).

l

I Same result for the charged KG equation in De Sitter-Kerr spacetime with
restricted asymptotic energy spaces in angular directions (restriction of
operators and spaces to ker(∂φ − n), n ∈ Z).

I Existence and completeness of wave operators for the wave equation in
Kerr spacetime with no angular restriction by
Dafermos-Rodnianski-Shlapentokh-Rothman.



Asymptotic completeness

Theorem (Georgescu-Gérard-Häfner, 2017)

Assume s sufficiently small.
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exist in Ė . The wave operators W± extend to bounded operators
W±(s) ∈ B(Ė±, Ė).
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What happens when s becomes large?

I Whiting transformations do not seem to work.

I Numerical investigation of long time behavior by Di Menza-Nicolas in
Reissner-Nordström spacetime.

I Numerical investigation of localization of low frequency resonances in De
Sitter-Reissner-Nordström spacetime in progress.
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Thank you for your attention!
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