Boundary value problems on Riemannian and Lorentzian manifolds

(joint with W. Ballmann, S. Hannes, A. Strohmaier)

Institut für Mathematik Universität Potsdam

Quantum fields, scattering and spacetime horizons: mathematical challenges Les Houches, May 22, 2018

Outline

1 Riemannian manifolds and elliptic operators

- The Atiyah-Patodi-Singer index theorem
- General elliptic boundary conditions

2 Lorentzian manifolds and hyperbolic operators

- Dirac operator on Lorentzian manifolds
- Fredholm pairs
- The Lorentzian index theorem
- More general boundary conditions

1. Riemannian manifolds and elliptic operators

M Riemannian manifold, compact, with boundary ∂M

spin structure \rightsquigarrow spinor bundle $SM \rightarrow M$

■ $n = \dim(M)$ even \rightsquigarrow splitting $SM = S_R M \oplus S_L M$ \rightsquigarrow Dirac operator $D : C^{\infty}(M, S_R M) \rightarrow C^{\infty}(M, S_I M)$

Need boundary conditions: Let A_0 be the Dirac operator on ∂M . $P_+ = \chi_{[0,\infty)}(A_0) =$ spectral projector

APS-boundary conditions:

 $P_+(f|_{\partial M})=0$

Atiyah-Patodi-Singer index theorem

Theorem (M. Atiyah, V. Patodi, I. Singer, 1975)

Under APS-boundary conditions D is Fredholm and

$$\operatorname{ind}(D_{APS}) = \int_{M} \widehat{A}(M) \wedge \operatorname{ch}(E) + \int_{\partial M} T(\widehat{A}(M) \wedge \operatorname{ch}(E)) - \frac{h(A_{0}) + \eta(A_{0})}{2}$$

Here

■
$$h(A) = \dim \ker(A)$$

■ $\eta(A) = \eta_A(0)$ where $\eta_A(s) = \sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \lambda \neq 0}} \operatorname{sign}(\lambda) \cdot |\lambda|^{-s}$

Which boundary conditions other than APS will work?

Warning

APS-boundary conditions cannot be replaced by anti-Atiyah-Patodi-Singer boundary conditions,

$$P_{-}(f|_{\partial M}) = \chi_{(-\infty,0)}(A_0)(f|_{\partial M}) = 0$$

Example

- M = unit disk $\subset \mathbb{C}$
- $\square D = \overline{\partial} = \frac{\partial}{\partial \overline{z}}$
- **Taylor expansion:** $u = \sum_{n=0}^{\infty} \alpha_n z^n$
- $\bullet A_0 = i \frac{d}{d\theta}$
- Fourier expansion: $u|_{\partial M} = \sum_{n \in \mathbb{Z}} \alpha_n e^{in\theta}$

APS-boundary conditions: $\alpha_n = 0 \text{ for } n \ge 0 \Rightarrow \ker(D) = \{0\}$ aAPS-boundary conditions: $\alpha_n = 0 \text{ for } n < 0 \Rightarrow \ker(D) = \text{ infinite dimensional}$

Generalize APS conditions

Notation

For an interval $J \subset \mathbb{R}$ write $L_J^2(\partial M) = \left\{ u \in L^2(\partial M) \mid u = \sum_{\lambda \in J \cap \operatorname{spec}(A_0)} a_\lambda \varphi_\lambda \right\}$

where $A_0 \varphi_{\lambda} = \lambda \varphi_{\lambda}$. Similarly for $H_J^s(\partial M)$.

APS-boundary conditions

$$f|_{\partial M} \in B = H^{\frac{1}{2}}_{(-\infty,0)}(\partial M)$$

1. Generalization

Replace $(-\infty, 0)$ by $(-\infty, a]$ for some $a \in \mathbb{R}$: $B = H_{(-\infty, a]}^{\frac{1}{2}}(\partial M)$

Generalize APS conditions

2. Generalization

Deform

$$B = \{ v + gv \mid v \in H^{\frac{1}{2}}_{(-\infty,a]}(\partial M) \}$$

where $g : H^{\frac{1}{2}}_{(-\infty,a]}(\partial M) \to H^{\frac{1}{2}}_{(a,\infty)}(\partial M)$ is bounded linear.

3. Generalization

Finite-dimensional modification

$$B = W_+ \oplus \{v + gv \mid v \in H^{\frac{1}{2}}_{(-\infty,a]}(\partial M)\}$$

where $W_+ \subset C^{\infty}(\partial M)$ is finite-dimensional.

Elliptic boundary conditions

Definition

A linear subspace $B \subset H^{\frac{1}{2}}(\partial M)$ is said to be an elliptic boundary condition if there is an L^2 -orthogonal decomposition

 $L^2(\partial M) = V_- \oplus W_- \oplus V_+ \oplus W_+$

such that

$$B = W_+ \oplus \{v + gv \mid v \in V_- \cap H^{\frac{1}{2}}\}$$

where

- 1) $W_{\pm} \subset C^{\infty}(\partial M)$ finite-dimensional;
- 2) $V_{-} \oplus W_{-} \subset L^{2}_{(-\infty,a]}(\partial M)$ and $V_{+} \oplus W_{+} \subset L^{2}_{[-a,\infty)}(\partial M)$, for some $a \in \mathbb{R}$;
- 3) $g: V_- \rightarrow V_+$ and $g^*: V_+ \rightarrow V_-$ are operators of order 0.

Fredholm property and boundary regularity

Theorem (Ballmann-B. 2012)

Let **B** be an elliptic boundary condition. Then

$$D_B: \{f \in H^1(M, V_R) \mid f|_{\partial M} \in B\} \rightarrow L^2(M, V_L)$$

is Fredholm.

Theorem (Ballmann-B. 2012)

Let **B** be an elliptic boundary condition. Then

 $f \in H^{k+1}(M, V_R) \Longleftrightarrow D_B f \in H^k(M, V_L),$

for all $f \in \text{dom } D_B$ and $k \ge 0$. In particular, $f \in \text{dom } D_B$ is smooth up to the boundary iff $D_B f$ is smooth up to the boundary.

- 1) Generalized APS: $V_{-} = L^{2}_{(-\infty,a)}(A_{0}), V_{+} = L^{2}_{[a,\infty)}(A_{0}), W_{-} = W_{+} = \{0\}, g = 0.$ Then $B = H^{\frac{1}{2}}_{(-\infty,a)}(A_{0}).$
- Classical local elliptic boundary conditions in the sense of Lopatinsky-Schapiro.

Examples

3) "Transmission" condition

Here

$$V_{+} = L^{2}_{(0,\infty)}(A_{0} \oplus -A_{0}) = L^{2}_{(0,\infty)}(A_{0}) \oplus L^{2}_{(-\infty,0)}(A_{0})$$

$$V_{-} = L^{2}_{(-\infty,0)}(A_{0} \oplus -A_{0}) = L^{2}_{(-\infty,0)}(A_{0}) \oplus L^{2}_{(0,\infty)}(A_{0})$$

$$W_{+} = \{(\phi, \phi) \in \ker(A_{0}) \oplus \ker(A_{0})\}$$

$$W_{-} = \{(\phi, -\phi) \in \ker(A_{0}) \oplus \ker(A_{0})\}$$

$$g : V_{-} \to V_{+}, \quad g = \begin{pmatrix} 0 & id \\ id & 0 \end{pmatrix}$$

Replace *B* by B_s where *g* is replaced by g_s with $g_s = s \cdot g$. Then B_1 = transmission condition and B_0 = APS-condition.

Hence $\operatorname{ind}(D^M) = \operatorname{ind}(D^{M'}_{transm.}) = \operatorname{ind}(D^{M'}_{APS}).$

Holds also if M is complete noncompact and D satisfies a coercivity condition at infinity.

Implies **relative index theorem** by Gromov and Lawson (1983).

2. Lorentzian manifolds and hyperbolic operators

Problem 1: Let *D* be a differential operator of order *k* over a closed manifold. Then $D: H^k \to L^2$ is Fredholm $\Leftrightarrow D$ is elliptic.

 \Rightarrow no Lorentzian analog to Atiyah-Singer index theorem

Problem 2: Hyperbolic PDEs behave badly on closed manifolds

Problem 3: Closed Lorentzian manifolds violate causality conditions

 \Rightarrow useless as models in General Relativity

But: There exists a Lorentzian analog to the Atiyah-Patodi-Singer index theorem!

A subset $\Sigma \subset M$ is called Cauchy hypersurface if each inextendible timelike curve in M meets Σ exactly once.

If M has a Cauchy hypersurface then M is called globally hyperbolic.

Examples:

- Minkowski spacetime (Special Relativity)
- Schwarzschild Model (Black Hole)
- Friedmann cosmos (Big Bang, cosmic expansion)
- deSitter spacetime

• • • •

Globally hyperbolic spacetimes

Let *M* be a globally hyperbolic Lorentzian manifold with boundary $\partial M = \Sigma_0 \sqcup \Sigma_1$ Σ_i compact smooth spacelike Cauchy hypersurfaces

Well-posedness of Cauchy problem

The map $D \oplus \operatorname{res}_{\Sigma} : C^{\infty}(M; V_R) \to C^{\infty}(M; V_L) \oplus C^{\infty}(\Sigma; V_R)$ is an isomorphism of topological vector spaces.

Wave propagator U:

U extends to **unitary** operator $L^2(\Sigma_0; V_R) \rightarrow L^2(\Sigma_1; V_R)$.

Fredholm pairs

Definition

Let *H* be a Hilbert space and $B_0, B_1 \subset H$ closed linear subspaces. Then (B_0, B_1) is called a Fredholm pair if $B_0 \cap B_1$ is finite dimensional and $B_0 + B_1$ is closed and has finite codimension. The number

 $ind(B_0, B_1) = dim(B_0 \cap B_1) - dim(H/(B_0 + B_1))$

is called the index of the pair (B_0, B_1) .

Elementary properties:

- 1.) $ind(B_0, B_1) = ind(B_1, B_0)$
- 2.) $ind(B_0, B_1) = -ind(B_0^{\perp}, B_1^{\perp})$

3.) Let $B_0 \subset B_0'$ with dim $(B_0'/B_0) < \infty$. Then

 $\operatorname{ind}(B_0',B_1) = \operatorname{ind}(B_0,B_1) + \dim(B_0'/B_0).$

Let $B_0 \subset L^2(\Sigma_0, V_R)$ and $B_1 \subset L^2(\Sigma_1, V_R)$ be closed subspaces.

Proposition (B.-Hannes 2017)

The following are equivalent:

- (i) The pair $(B_0, U^{-1}B_1)$ is Fredholm of index *k*;
- (ii) The pair (UB_0, B_1) is Fredholm of index *k*;
- (iii) The restriction

 $D: \{f \in FE(M, V_R) \mid f|_{\Sigma_i} \in B_i\} \rightarrow L^2(M, V_L)$

is a Fredholm operator of index k.

Let $\dim(B_0) < \infty$ and $\operatorname{codim}(B_1) < \infty$.

Then *D* with these boundary conditions is Fredholm with index

$\dim(B_0) - \operatorname{codim}(B_1)$

Theorem (B.-Strohmaier 2015)

Under APS-boundary conditions *D* is Fredholm. The kernel consists of smooth spinor fields and

$$\operatorname{ind}(D_{APS}) = \int_{M} \widehat{A}(M) \wedge \operatorname{ch}(E) + \int_{\partial M} T(\widehat{A}(M) \wedge \operatorname{ch}(E)) \\ - \frac{h(A_0) + h(A_1) + \eta(A_0) - \eta(A_1)}{2}$$

 $\operatorname{ind}(D_{\mathsf{APS}}) = \operatorname{dim} \operatorname{ker}[D : C^{\infty}_{\mathsf{APS}}(M; V_R) \to C^{\infty}(M; V_L)] \\ - \operatorname{dim} \operatorname{ker}[D : C^{\infty}_{\mathsf{aAPS}}(M; V_R) \to C^{\infty}(M; V_L)]$

aAPS conditions are as good as APS-boundary conditions.

Boundary conditions in graph form

A pair (B_0, B_1) of closed subspaces $B_i \subset L^2(\Sigma_i, V_R)$ form elliptic boundary conditions if there are L^2 -orthogonal decompositions

 $L^{2}(\Sigma_{i}, V_{R}) = V_{i}^{-} \oplus W_{i}^{-} \oplus V_{i}^{+} \oplus W_{i}^{+}, \qquad i = 0, 1,$

such that

(i) W_i^+, W_i^- are finite dimensional;

- (ii) $W_i^- \oplus V_i^- \subset L^2_{(-\infty,a_i]}(\partial M)$ and $W_i^+ \oplus V_i^+ \subset L^2_{[-a_i,\infty)}(\partial M)$ for some $a_i \in \mathbb{R}$;
- (iii) There are bounded linear maps $g_0: V_0^- \to V_0^+$ and $g_1: V_1^+ \to V_1^-$ such that

 $B_0 = W_0^+ \oplus \Gamma(g_0),$ $B_1 = W_1^- \oplus \Gamma(g_1),$

where $\Gamma(g_{0/1}) = \{ v + g_{0/1}v \mid v \in V_{0/1}^{\mp} \}.$

Theorem (B.-Hannes 2017)

The pair (B_0, B_1) is Fredholm provided

- (A) g_0 or g_1 is compact **or**
- (B) $\|g_0\| \cdot \|g_1\|$ is small enough.
- 1.) Applies if $g_0 = 0$ or $g_1 = 0$.
- 2.) Conditions (A) and (B) cannot both be dropped (counterexamples).

Counterexample

Put
$$M = [0, 1] \times S^1$$
 with $g = -dt^2 + d\theta^2$. Then
 $U = \text{id} : L^2(\Sigma_0) = L^2(S^1) \rightarrow L^2(\Sigma_1) = L^2(S^1)$

Now choose

$$\begin{split} V_0^- &= L^2_{(-\infty,0)}(A), \quad V_0^+ = L^2_{(0,\infty)}(A), \quad W_0^- = \ker(A), \quad W_0^+ = 0, \\ V_1^- &= L^2_{(-\infty,0)}(A), \quad V_1^+ = L^2_{(0,\infty)}(A), \quad W_1^- = 0, \qquad W_1^+ = \ker(A). \end{split}$$

Let $g_0: L^2_{(-\infty,0)}(A) \to L^2_{(0,\infty)}(A)$ be unitary and put $g_1 = g_0^{-1}$. Then

$$B_0 = \Gamma(g_0) = \{ v + g_0 v \mid v \in L^2_{(-\infty,0)}(A) \}$$

$$B_1 = \Gamma(g_1) = \{ g_1 w + w \mid w \in L^2_{(0,\infty)}(A) \}.$$

Now $(B_0, U^{-1}B_1) = (B_0, B_1) = (B_0, B_0)$ is not a Fredholm pair.

Summary

	Riemannian	Lorentzian
APS	\checkmark	\checkmark
aAPS	-	\checkmark
elliptic b.c.	\checkmark	depends

 C. Bär and W. Ballmann: Boundary value problems for elliptic differential operators of first order Surv. Differ. Geom. 17 (2012), 1–78 arXiv:1101.1196

- C. Bär and A. Strohmaier: An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary to appear in Amer. J. Math. arXiv:1506.00959
- C. Bär and A. Strohmaier: A rigorous geometric derivation of the chiral anomaly in curved backgrounds Commun. Math. Phys. 347 (2016), 703–721 arXiv:1508.05345
- C. Bär and S. Hannes: *Boundary value problems for the Lorentzian Dirac operator* arXiv:1704.03224